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Abstract

Mechanism design seeks algorithms whose inputs are pro-
vided by selfish agents who would lie if advantageous. In-
centive compatible mechanisms compel the agents to tell
Of-

ten, as in combinatorial auctions, such mechanisms involve

the truth by making it in their self-interest to do so.

the solution of NP-hard problems. Unfortunately, approxi-
mation algorithms typically destroy incentive compatibility.
Randomized rounding is a commonly used technique for de-
sighing approximation algorithms. We devise a version of
randomized rounding that is incentive compatible, giving a
truthful mechanism for combinatorial auctions with single
parameter agents (e.g., “single minded bidders”) that ap-
proximately maximizes the social value of the auction. We
discuss two orthogonal notions of truthfulness for a random-
ized mechanism, truthfulness with high probability and in
expectation, and give a mechanism that achieves both si-
multaneously.

We consider combinatorial auctions where multiple
copies of many different items are on sale, and each bid-
der 7 desires a subset S;. Given a set of bids, the problem of
finding the allocation of items that maximizes total valua-
tion is the well-known SETPACKING problem. This problem
is NP-hard, but for the case of items with many identical
copies the optimum can be approximated very well. To turn
this approximation algorithm into a truthful auction mech-
anism we overcome two problems: we show how to make
the allocation algorithm momnotone, and give a method to
compute the appropriate payments efficiently.
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1 Introduction

The combinatorial auction is one of the basic mecha-
nisms of electronic commerce. Many large-scale com-
binatorial auctions have also been used recently by the
FCC and governmental bodies in Europe and elsewhere
to allocate spectrum licenses to mobile phone providers.
The FCC auctions alone granted thousands of licenses
to hundreds of companies, raising over $40 billion [5].
The sheer magnitude of these spectrum auctions and
the rise of electronic commerce have both generated a
surge of interest in designing good mechanisms for such
combinatorial auctions.

We will consider auction mechanisms (direct reve-
lation auctions) where each bidder i bids a valuation b;
for a set S; she is interested in. We will assume that
each bidder ¢ is bidding for a single set S;, and this set
is known to the auctioneer or can be inferred from con-
text. Thus, each agent’s only private information is her
true valuation for that set. A standard desire in the
design of combinatorial auctions is that they be truthful
(or incentive compatible). The auction is truthful if each
bidder’s best strategy is always to reveal her true val-
uation, regardless of the other bidders’ valuations, and
regardless of how they decide to bid. That is, truthful
bidding is a dominant strategy for each bidder.

It is known that an allocation algorithm leads to
a truthful mechanism if and only if it is monotone.
A randomized auction mechanism A is said to be
monotone if for every agent ¢, the probability that
A assigns the desired set S; to agent i is increasing
in her bid b;. This characterization is very useful in
designing computationally feasible truthful mechanisms
for problems which are NP-hard - if we can come up with
an approximation algorithm that is monotone, there
exists an accompanying payment scheme that gives a
truthful mechanism. Further, the whole mechanism is
computationally efficient if the payments can also be
computed efficiently.

In this paper we develop a technique that makes
randomized rounding-based approximation algorithms
useful in designing truthful mechanisms. Randomized
rounding of an LP solution is a commonly used tech-
nique for designing polynomial time approximation al-



gorithms. Typically such rounding algorithms succeed
with high probability. However, it is not clear what
the associated mechanism should do to ensure incentive
compatibility when the rounding fails to produce a fea-
sible solution. In this paper we show a technique for
obtaining a monotone allocation algorithm from such a
rounding scheme, and also show how to compute pay-
ments in polynomial time.

There are two natural goals for designing good
auctions: maximizing the revenue, and maximizing the
total valuation, which is the sum of the valuations
of the bidders who receive their desired sets. In
this paper we will concentrate on the latter objective,
which is referred to as efficiency in the economics
terminology. In some cases, mazimizing efficiency is
a more important objective than generating revenue.
For instance, one of the primary goals in the spectrum
auctions was to get spectrum licenses into the hands
of the companies that could best use them to build
up a viable mobile phone network, and it is widely
believed that high valuation is a strong indicator of
how well-positioned the company is to make good use
of the spectrum license [5]. The well-known Vickrey-
Clarke-Groves (VCG) mechanism [18, 4, 9] is truthful
and maximizes the total valuation. However, finding
the VCG allocation often requires solving an NP-hard
optimization problem (e.g., in the case of single-minded
bidders, the optimization problem is the well known
SETPACKING problem), and simply replacing the exact
optimization routine required in the VCG mechanism
with an approximation algorithm causes the mechanism
to lose its incentive compatibility properties [14].

Over the last 15 to 20 years there has been a large
amount of work on approximation algorithms for a huge
array of hard optimization problems. However, so far
there are only very few examples when approximation
algorithms have turned out to be useful for designing
polynomial time truthful mechanisms. One of the first
such examples was due to Lehmann, O’Callaghan, and
Shoham [11] for the case of single-minded bidders (i.e.,
each agent bids for a single set), who give a mechanism
based on a greedy allocation. Their mechanism is truth-
ful and attains a /m-approximation to the optimal al-
location, where m is the number of items. Mu’alem and
Nisan [12] consider the case of known single-minded bid-
ders, where the sets are known, and each agent’s only
private data is its valuation. They show how to combine
certain truthful mechanisms into an improved mecha-
nism, while preserving truthfulness. Using this tech-
nique, they improve the greedy mechanism of Lehmann
et al by adding a partial enumeration of the space of
allocations. The resulting polynomial time mechanism
yields an ey/m approximation, for any constant e > 0.

We consider the case of known single-minded bid-
ders when there are Q(In K) copies of each item avail-
able, where K is the maximum size of the sets S;. For
the corresponding optimization problem of finding an
allocation maximizing total valuation, there is a good
approximation algorithm that uses randomized round-
ing. Our randomized auction mechanism is based on
this algorithm. To turn the approximation algorithm
into a truthful auction mechanism we overcome two dif-
ficulties: we show how to make this allocation mono-
tone, and give a method to compute the appropriate
payments efficiently. Our auction mechanism runs in
polynomial time, is truthful, and attains a (1 + €) ap-
proximation to the optimal valuation. It essentially im-
plements the fractional version of the VCG mechanism,
both in terms of expected allocation and expected rev-
enue.

2 Basic definitions

A combinatorial auction is designed to divide up a set
of items Z among a set N of n bidders. Each bidder i
has a valuation function v; : 22 — R7T that describes
her preferences over the various subsets of items. For
S C Z, v;(S) represents the maximum amount of money
bidder ¢ is willing to pay for the set of items S. The
function v; is known only to player i. A single-minded
bidder i is one who values only a particular set of items.
More formally, there is a set S; and a ¢ > 0 such that
v(T) = cif S; C T and v;(T) = 0 otherwise. In this
paper, we consider the case where all bidders are single-
minded, and the auctioneer knows the sets S; ahead of
time. This is the case of known single-minded bidders
considered by [12]. There can be multiple copies of
each good, in which case the multiplicity m; denotes
the number of copies of item j that are available. A
single-minded bidder wants only one copy of each good
in her desired set.

We consider direct revelation auction mechanisms.
Each player ¢ submits a bid b; to the mechanism. Player
1’s bid is supposed to represent the maximum amount v;
that she is willing to pay for her desired set, but she may
choose to lie. We assume that v; is some given constant
that does not depend on the outcome of the auction or
on the other players’ bids (i.e. a private values model).
Based on the bids, the mechanism decides which players
win and at what price. Denote the vector of all n bids
by b. Formally, a mechanism M is a collection of 0-1
functions z;(b) and real functions P;(b), where =;(b) is
1 if ¢ wins her desired set and 0 otherwise, and P;(b)
is the price ¢ must pay. The functions z; must be
such that each item is sold to at most as many players
as there are items available, i.e. . 5, Ti < my for

i:j€
each item j. We define profit;(b) = v;z:(b) — Pi(b),



that is, 7’s valuation for the goods she gets, minus the
price she pays. We assume that each player’s goal is to
maximize her own profit. The allocation functions x;
and the price functions F; are all publicly known. The
only pieces of private information are the valuations —
only player ¢ knows the true value of v;. We require
that our mechanisms satisfy the voluntary participation
condition, which says that a player is charged zero if
she loses, and her expected payment is at most b; if she
wins. This guarantees that players who bid truthfully
always obtain non-negative expected profit.

Given a publicly specified auction mechanism, how
should a player bid to maximize her own profit? Let
b_; denote the vector of bids by all bidders besides , so
we can write b as (b_;, b;). We say that truthtelling
is a (weakly) dominant strategy for bidder i if, no
matter what the other agents do, bidding her true
valuation v; will maximize her profit. That is, v; €
argmax;_ profit(b_;, b;), for all b_;. In other words, even
if player ¢ knew the bids of the other agents ahead of
time, still the best she could do is to tell the truth.
If truthtelling is a dominant strategy for each agent,
then we say the mechanism is truthful (or incentive
compatible). TFor a deterministic mechanism to be
truthful, it is necessary that bidder i’s price P;(b_;,b;)
depend on her own bid b; only to the extent that it
determines whether she wins or loses.

Auction designers care about truthfulness for two
main interrelated reasons. First, it makes life easy for
the bidders. In order to determine an optimal bidding
strategy, each bidder only has to figure out her own
valuation. She does not have to make any assumptions
about the other players’ valuations, or what bidding
strategies they will use. In particular, she does not have
to perform any difficult Nash equilibrium calculations,
nor does she have to assume that the other agents
are performing those same calculations to determine
their own bids. The second reason is that, because
truthful bidding is a dominant strategy, players are
likely to follow it, so bidder behavior becomes much
more predictable than in an auction without dominant
strategies.

Sometimes it is useful for the mechanism to use ran-
domization. A randomized mechanism can be viewed as
a randomization over a collection of deterministic mech-
anisms. That is, a randomized mechanism flips some
coins to select a random element w from some proba-
bility space, then uses a deterministic mechanism M,,
based on the coin flips. All details of the mechanism are
public knowledge, except for the actual outcomes of the
coin flips. There are several notions of truthfulness for
randomized mechanisms. The strongest notion is for the
mechanism to be strongly truthful. This means that for

every w the mechanism M, is truthful. This concept
has been used in [13, 3, 7, 6], but it is very restrictive.
Because strong truthfulness is so restrictive, there
have been various attempts to find a weaker but still
useful concept. Omne approach is to guarantee that
truthful bidding always maximizes a player’s expected
profit [1], i.e., the mechanism is {ruthful in expectation.
Two orthogonal notions are that a player may benefit
from lying, but not by much [17], or only with a small
probability. We pursue the first and third approaches.
We say a randomized mechanism is strongly truthful
with error probability e if for each b_; and each wv;
we have Prlv; ¢ argmax, profit;(b_;,b;)] < e If €
is inverse polynomial in some specified parameters of
the auction (such as number of items or bidders) then
we say the mechanism is strongly truthful with high
probability. Even in the rare event that a bad w is
chosen by the mechanism, computing an effective lie
could be difficult and would require knowledge about
the other bids. Moreover, such a lie may backfire in the
probability (1 — €) event that the mechanism selects a
good w. In using such a mechanism, one hopes that
these factors combined will convince the agents not to
bother lying. This notion may be preferable to that of
truthfulness in expectation because it does not assume
players are risk-neutral. In this paper we design an
auction mechanism that is simultaneously truthful in
expectation and strongly truthful with high probability.

3 Owur mechanism for known single-minded
bidders

We design a randomized mechanism based on solving
the natural linear programming relaxation of the SET-
PACKING problem, and randomly rounding the result-
ing fractional allocation. In the case that the number of
copies of each item is Q(In K) (K is the maximum size
of a set S;), we prove that our mechanism achieves near-
optimal total valuation, is truthful in expectation and
strongly truthful with high probability, and has revenue
that compares well with a variant of VCG.

First recall that a deterministic mechanism for
known single-minded bidders is truthful if and only
if the allocation rule is monotone and the price for
a winning player equals her “threshold”. That is, if
we fix the other bids b_;, then player ¢ has some
threshold bid T;(b_;) such that she wins and pays
Tz(b,Z) if b, > n(bfz), and loses if b@ < Tz(b,Z)
This characterization has been noted many places, such
as [7, 11, 1, 2, 16, 12]. Analogously a randomized
mechanism is truthful in expectation if and only if
for every agent i, the probability p;(b_;,b;) that the
mechanism assigns her the desired set S; is monotone
in her bid b;, and her expected payment is equal to a



certain integral of the function p; [1].

Our mechanism works as follows. First collect the
bids. Using some small fixed ¢’ € (0,1) that is publicly
known, pretend that we have only m} = |(1 — ¢')m;]
copies of each item j to distribute. Now solve the
following linear program to get an optimal fractional
allocation, using the artificially reduced supply of goods.

maximize D ien bim (3.1)
subject to: Zi:jeSi z; <mj foralljeZ
0<g; <1 forall:ie N

Denote the optimal fractional allocation by z. We

assume that we always find a vertex solution to the
linear program, and break ties in a particular fixed
way independent of bids b; (e.g. between two vertex
solutions, choose the solution with the higher value
of z; for the smallest index i in which they differ).
Notice that a fractional value of x; means that the LP
allocates player ¢ an z; fraction of each good in her
set S;. Now we perform the standard trick of treating
the z;’s as probabilities. We define a preliminary set of
initial winners by selecting each bidder ¢ independently
with probability z;. However, we may have tried to
sell too many copies of some items, so we will need to
modify this outcome deleting certain selected bidders.
The modified outcome will be feasible, yet we keep the
auction monotone in the bids.

First it is not hard to see that, with high probability,
no item is over-sold.
Chernoff bound. Let Xi,...,X, be independent
Poisson trials such that, for 1 <i <n, Pr[X; = 1] = p;.
Then for X = X1+4+...+X,,, u > p1+...+ pa, and any
a < 2e — 1 we have

PriX > (1 +a)u] < e h/4,
ProprosiTION 3.1. Suppose that each item j € T has
multiplicity m; = Q(InK). Then the probability that
a gwen item is over-sold is at most ﬁ (where the

4(c+1)

multiplicative constant inside the Q is 20—y /-

It is easy to show that this randomized initial
allocation is monotone, i.e., that the value z; in the
optimum is monotone in the bid b; of agent :.

LEMMA 3.2. Let x be an optimal solution to a linear
program when the objective function vector is b, and let
z’ be an optimal solution when the objective function
vector is U (where lies are broken independently of b
and b'). Suppose b; = b for all i # ig and b, > by,.
Then either x' = x or x} > @y, .

Proof: Since z is the optimal solution to the linear
program, and z’ is a feasible solution,

bz > b-a (3.2)

Similarly,

V.2l > v ox (3.3)
If + = x/, we are already done. Now, since the tie
breaking rule is the same, if the two vertices are distinct,

one of the two inequalities must be strict. Adding (3.2)

and (3.3), and noting that b’ - @ = b- 2 + (b, — bs,)x;,
for all vectors xz, we get

(b, — bio) (i, — Ti5) >0
from which the result follows. [ ]

From the above result, it follows that the probability
of any agent being rounded to 1 is monotone in her
bid. Thus if no items were ever initially oversold, we
would get a truthful mechanism. However, there is
some probability that an agent is not allocated the
good even though she is initially rounded to 1, and
moreover, this probability is not necessarily monotone
in the agent’s bid. As a result, we do not yet have a
truthful mechanism.

3.1 Dealing with over-sold items: the basic
idea While the probability that the rounding fails
is small, it may depend on the agent’s bid and may
not be monotone. Our approach is to drop each agent
with some additional probability so as to make the
overall probability of any agent ¢ being allocated her
set directly proportional to the variable ;. When the
rounded solution is not feasible, it may still be possible
to serve some agents without clashes. We use the
following approach:

Step 1. Solve the scaled linear programming
relaxation (3.1).

Step 2. Round each variable z; to 1 with
probability z;, set to O otherwise.

Step 3. Select all agents 7 that are rounded
to 1 and such that the constraints for all
items in S; are satisfied.

Step 4. Drop each agent with some additional
probability (to be defined later).

Let & denote the integer assignment resulting
in Step 2. Consider an agent ig. The agent is selected
in Step 3 if she is rounded to 1 in Step 2 and the
constraints for all items in S;, are satisfied. That is, 4o
is selected if &;, = 1 and & satisfies

> & < my—1 foralljeS,.
i1 JES;, 140
Let I;; = {¢ : S;nNS;, # 0}. The variables

x; : ¢ € I, form a feasible solution to the scaled linear



program (3.1) induced on the items in S;,. Let ¢;, be
the conditional probability that no item in S;, is over-
sold, given that &;, = 1. Set ¢* = 1 — [?C. Using
Proposition 3.1 and the union bound on the items in S;,,
we get that ¢;; > 1 — [%c > ¢*. Thus the probability
that agent i is selected at Step 3 is z;,¢;, > xi,¢".
Therefore, in Step 4 we would like to drop agent ¢ with
probability 1—(g*/g;), so that the probability that agent
1 survives through the end of Step 4 is exactly z;¢*. We

would then have a monotone allocation algorithm.

3.2 Dealing with over-sold items: important
details Note that the algorithm described above re-
quires us to exactly compute the probability g;. How-
ever, it is NP-hard to compute this number exactly, so
the above scheme cannot be implemented efficiently. We
get around this problem by using an estimator for this
probability. First, we need the following simple observa-
tion which follows from Cramer’s rule and the fact that
the reduced multiplicities m; are integers.

OBSERVATION 3.3. Let x be any vertex of the polytope
{z: Az < 1,0 < z < 1}, where A € {0,1}"™*" and
r € Z™. Then x € Q" and each x; can be written with
denominator D, for some D < m!.

COROLLARY 3.4. Let 2%, 22 be vertices of the polytope
{z : Az < r,0 < z < 1}, where A € {0,1}™*"
and r € Z™. Then for each i, either x} = z7 or

x} > x2(1+68) or 22 > x1(1+ 8), where § = (1/m!)?.

Corollary 3.4 along with Lemma 3.2 imply that
whenever an agent ¢ increases her bid, this either has
no effect on the allocation or it increases z; by a factor
of at least (1 + §).

The algorithm described above requires computing
1/¢;, for each agent ig. Instead of the exact value,
we use an estimator Y for this number, and in Step
4 we retain agent ig with probability ¢*Y. Consider
the following experiment: Round z;, to 1. For each
i € I;,, round z; to 1 independently with probability
x;. Recall that g;, is defined to be the probability that
this solution satisfies the constraints for all items in
Si,. Let the random variable X denote the number
of trials of the experiment required before this happens,
so that E[X] = 1/¢;,. Our estimator Y for 1/¢;, is
min(HT‘s6 Zévzl X*,1/g*), where N = O(K°log 3-), the
X*%s are independent trials of the above experiment,
and € < 1 is some error parameter of our choosing.
(Later, ¢ will be part of the error probability in our
guarantee on strong truthfulness. We will typically set
€ € 1/K¢.) The reason we take the min is that in Step
4, we retain agent ig with probability ¢*Y, so we must
ensure that this number is at most 1. The expectation

of HT‘SEZéV:l X* is exactly (1 + &¢)/q;,, which is less
than and bounded away from 1/¢*. Since Zévzl X*
is a negative binomial random variable with success
probability ¢;, =~ 1, its distribution is concentrated
about its mean, so the expectation of Y will not be
much smaller than (1 + d¢)/g;,. In particular, we can
use moment generating functions to bound the upper
tail’s contribution to the expectation, and obtain the
following.

LEMMA 3.5. The estimator Y defined above is at most
1/q*, and E[Y] € [1/qs,, (1 + €)/q;,]-

Note that the probability that agent ig is not dropped
in Step 4 of the algorithm above is exactly ¢* E[Y]. This
finishes the description of our algorithm, which we will
call RANDROUND.

We first argue that this mechanism is monotone.

THEOREM 3.6. The probability that an agent i is se-
lected by the algorithm RANDROUND is monotone in-
creasing in her bid b;.

Proof: Fix an agent ¢ and a vector of bids b_;
for agents other than i. Let b} > b;. Consider the
corresponding LP optima z and z’. From Lemma 3.2
either x = 2’ or z; > =;. In the first case, the
experiment is the same and hence agent i’s probability
of succeeding is the same whether she bids b; or b}. In
the second case, her probability p;(b_;, b;) of winning if
she bids b; is given by

pi(b_i,b;) = z;q:¢"E[Y]

< 2iqiq"(1+66)/qi
= x;¢"(1 + d¢)

N

If she bids b}, then her probability of winning is

pi(b_s, ) T Y]
zqiq* /g

z;(L+ 8)g*

2
2

where the last inequality follows from Corollary 3.4.
Since € < 1, this shows that the above LP rounding
algorithm is monotone. [ |

THEOREM 3.7. Suppose that each item has multiplicity
Q(ln K), as in Proposition 3.1. Let OPT denote the
optimal total wvaluation achievable by any allocation.
Then the expected total valuation achieved by the above
algorithm is at least (1 — ¢")g*OPT.

Proof: Every feasible allocation gives a feasible
solution to the LP with the actual multiplicities m;.
Scaling down any solution to this LP by a factor of



Lo

t t

Figure 1: The graph shows i’s probability p;(b_;, b;) of
winning as a function of her bid b;. The gray area R; is
her expected payment. If b; is a truthful bid, then the
white area is her expected profit.

(1 — ¢) yields a solution to our LP (3.1) with the
artificially reduced multiplicities m;. Therefore, the
optimal solution to this LLP has value Zz’e woime >
(1 — ¢)OPT. The probability that agent 7 is selected
is at least x;9*, hence the expected total valuation is at
least (1 —€’)g* times the LP optimum. [ |

4 Computing Payments

It is not obvious how one should compute payments
for the winners. There is a payment scheme given
in [1] that yields truthfulness in expectation (provided
the allocation rule is monotone), but in our case it
involves an integral of a step function with possibly
exponentially many breakpoints. One approach is to
use an appropriate unbiased estimator for this integral,
which we explain briefly below. In Section 4.1 we
show another method, which attains strong truthfulness
with high probability (but not in expectation), using
a simpler (non-monotone) allocation rule. Finally, in
Section 4.2 we show how to combine this payment
scheme with our monotone allocation rule of Section 3.1
to simultaneously obtain truthfulness in expectation
and with high probability.

Recall that p;(b_;, b;) denotes the overall probabil-
ity that ¢ wins her desired set S;. Since b_; is fixed
throughout this discussion, we suppress it in the nota-
tion. A result in [1] says that to guarantee truthfulness
in expectation, ¢’s payment should be

b;
&:m@m—A pi(u)du. (4.4)

See Figure 1. In order to satisfy individual rationality,
we must charge 0 to losing bidders. Thus, one truthful

payment scheme is to charge R;/p;(b;) to agent i if she
wins. Note that p;(u) is a step function which jumps
whenever the selected vertex in the LP (3.1) changes
and is flat elsewhere. Thus, it could have exponentially
many breakpoints, so we can not obviously compute R;
efficiently. Instead, we can randomize the payment for
winning bidder ¢ by running the following experiment.
Select some u € [0, b;] uniformly at random, and run the
allocation algorithm once, assuming ¢ had bid w. If in
the experiment i wins, set Z = b;, else set Z = 0. Then
Z is an unbiased estimator for the integral. Let X be
an independent unbiased estimator for 1/p;(b;). Then
the random price b; — ZX for agent 7 has the correct
expectation.!

4.1 Threshold payments Consider the simpler al-
location rule where we leave out Step 4 (the drop step).
As previously noted, this allocation may not be mono-
tone, in which case there is no payment scheme that is
truthful in expectation. Here we give payments that are
truthful with high probability.

In the bidder selection step, let us perform the
rounding by selecting n independent uniform[0, 1] ran-
dom variables y1,...,yn, and choosing i to be an ini-
tial winner if y; < xz;. Note that each bidder 7 is se-
lected by this experiment independently with probabil-
ity x;, as required by Step 2. For each winning bid-
der i we compute a price that will depend on the out-
come of the random variable y; (and of course also on
b_;). Fix b_; and a realization of the random cutoff
y;. There is a threshold value T;(b_;,y;) such that i
will lose if b; < Ty(b_;,y;) and be an initial winner if
b; > T;(b_;,y;). See Figure 2. This threshold is the
point at which z;(b_;, b;), considered as a function of b;
with b_; fixed, first rises to y;. We set player ¢’s price
to be T;(b_;, y;) if she actually wins.

To compute T(b_;,y;), we binary search on b;,
re-solving the LLP each time. For the vector of bids
(b_s, Ti(b—s,y:)) there are two equally good fractional
allocations 2! and x?. Therefore, T;(b_;,y;)(z} —2?) =
>,z bi(@F — 7). Assuming all bids are given to d bits
of precision, we can express T;(b_;, y;) as a fraction with
denominator at most 2¢(m!)* (by Observation 3.3), so
we can use binary search and the method of Diophantine
approximation to compute it exactly in polynomial
time.

If our mechanism never had to throw away any ini-
tial winners, then our allocation algorithm would be
strongly truthful. Suppose we fix a particular real-
ization w of the vector of random variables y1,...,yn.

TThis payment has the peculiar property that it is often
negative, i.e. the auctioneer must pay the buyer.
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Figure 2: The graph shows #’s fractional allocation as
a function of her bid b;. It is a step function that is
flat while one vertex of the LP (3.1) stays optimal, then
jumps when another vertex becomes preferred. Since y;

lands in (22, 23), i’s payment is t3.

Then the only circumstance under which agent i could
benefit by lying is if ¢ is selected as an initial winner, but
is discarded because one of the items in S; is oversold.
Since this probability is at most %, our mechanism is
strongly truthful with high probability.

This payment scheme also has the nice property
that it satisfies the “no positive transfers” property —
i.e. the bidders never get paid by the mechanism — and
a stronger notion of individual rationality — if agent
1 wins, then she pays at most b; for sure, not just in
expectation.

4.2 Combining threshold payments with the
monotone allocation We now show how to modify
this threshold scheme to get truthfulness in expectation,
using the monotone allocation rule of Section 3.1. If it
were the case that p; = ¢*x; for all 7, i.e. each agent’s
probability of winning were directly proportional to her
fractional allocation from the LP, then the threshold
payment scheme would give the correct expected pay-
ment, so it would already be truthful in expectation.
The problem is that we just have p; = ¢fx; for some
qf € [¢%, ¢*(1 + d¢)], and moreover we cannot compute
the ¢} exactly. Our solution is to use the threshold
payments as a first approximation, then add a small
correction on a set of small probability.

Let the fractional solution values (the steps in
Figure 2) be 2!, 22, ... 27 such that the solution for
agent i’s actual bid b; is /. Moreover, let ¢* be the
probability that the sale to agent 7 is cancelled in Steps
3 and 4, when the solution corresponding to z* is used.
To get truthfulness in expectation, when agent ¢ wins,

her expected payment should be

1 R .
, (biquj - Z(tk+1 —t)q"a* — (b — tj)q7x7)> :

J
q k=1

Suppose we use the threshold payment scheme. Given
that agent i wins, y; is distributed uniformly on [0, 27].
Thus, agent i’s expected payment is m% S k(2R —

x*~1), which rearranges to

7j—1

1 . i
= (mjbi - Z(tk+1 — tp)z* — (b; — tj)$j>

k=1

where 2° = 0. Therefore, we must add some correction
term to increase this payment by

i1 k k
T q
> (ki1 — tk)—5 <1 - —)

k=1 4

in expectation.

One way to do this is to add (tx41 — tk)%
whenever y; € [z%,(1 + ed)a*], for k = 1,...,5 — 1.
See Figure 3. Since we do not know ¢* and 1/¢7, we
must replace them in the formula with independent
unbiased estimators. These estimators can be obtained
by running our allocation algorithm. The expected
payment is now that given by formula (4.4), so the
mechanism is truthful in expectation. When y; ¢
[#F, £ (1+€d)] for all k, our payments are just threshold
payments. This happens with probability at least (1—¢)
since by Corollary 3.4, consecutive fractional allocations
x* are spaced by factors of at least (1 + §). As we
argued in the last section, the threshold mechanism is
strongly truthful with high probability. Hence we get

the following. (Recall ¢ < 1/K*¢.)

THEOREM 4.1. Assuming the item multiplicities are all
Q(ln K) as in Proposition 3.1, algorithm RANDROUND
with the above payment scheme is truthful in expectation

and is also strongly truthful with error probability e+ [gc .

5 Revenue considerations

Now we consider the revenue generated by our auction.
We show that the expected revenue generated is very
close to that generated by a natural fractional relaxation
of the VCG mechanism. First we must define this
mechanism.

First recall the VCG mechanism: it chooses a fea-
sible allocation that maximizes the utilitarian objective
function, which is the total reported valuation of the
winning players. That is, it selects some

z*(b) € argmax,, Z biz;,
ieN

(5.5)
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Figure 3: The left graph shows agent ¢’s probability of success as a function of her bid b;. The boxes indicate
our margin of uncertainty about this probability. Modulo this uncertainty, the shaded area denotes the truthful
payment function. The right graph illustrates our payment scheme.

where x runs over all feasible allocations.

The mechanism computes a bonus for each bidder,
based on that bidder’s marginal value, which is the dif-
ference she made in the objective function by partici-
pating. Formally, let V(N — N’) denote the maximum
total valuation achievable in (5.5) when the players in
N7 are removed. Then bidder i’s marginal value is de-
fined to be V(N) — V(N —i). The mechanism charges
P;(b) = bz; — (V(N) =V (N —1)) to each player . (This
formula evaluates to zero for players who lose.) The util-
itarian allocation is clearly monotone. Moreover, the
objective function is indifferent about satisfying bidder
1 when she bids exactly her threshold. So if she wins,
then V(N) — V(N —34) = b; — T;(b_;), so the VCG pay-
ment is T;(b_;). Notice that if player 7 bids truthfully,
then her profit is equal to her marginal value.

The VCG mechanism is defined with respect to
a set of feasible allocations. Usually we maximize
over all feasible integer allocations, meaning that each
bidder either wins or loses, and no item is over-sold.
However, we could consider enlarging the set of allowed
allocations to permit fractional allocations. That is, we
could allow ourselves to let player ¢ win to a fractional
extent x;, which would mean that she receives an x;
fraction of each good in S;. In other words, we would
be maximizing the linear program (3.1), using the actual
multiplicities m;. Of course, we could implement such
a mechanism only if the goods were divisible. We
assume that player ¢ attains a benefit of v;z; from
winning to the fractional extent z;. Thus, she wishes
to maximize profit;(b) = wv;z;(b) — P;(b). Player i’s

marginal value to the system is V(N) — V(N — 1),
where V(A7) is the optimal LP value using only the
players in N7. The VCG payment formula becomes
Pi(b) = bz — (VIN) — V(N —1i)). We refer to this
resulting mechanism as fractional VCG, or FVCG for
short.

Similarly, we can define an FVCG mechanism with
respect to the artificially reduced multiplicities m;. We
will show that the expected revenue of our mechanism
is almost the same as the revenue generated by the frac-
tional VCG mechanism using the reduced multiplicities.

First we obtain an expression for the revenue gen-
erated by the fractional VCG mechanism. Fixing b_;,
how does the optimal allocation z;(b_;, b;) change as i
increases her bid from 0 upward? Suppose the mech-
anism always selects some vertex solution of the LP.
Initially, z; = 0. The only part of the LP that changes
is the direction of the objective function vector, not the
polytope of feasible solutions. Thus, the optimal z; re-
mains zero for an interval until i’s bid hits some thresh-
old t1. At this point, some other vertex solution with
xz; = 21 > 0 becomes optimal. Now this solution re-
mains optimal for some interval, until z; jumps again
at b; = to to some higher level #?. Suppose x; jumps
J times at £,,...,%; to new levels 2, ..., 27 as we raise
’s bid to its actual value b;. For bids in (¢k, tk11), the
LP value increases at rate a*. Thus, i’s marginal value
is S0  aF (bey — tr) + 29 (b; — t;), and her price P; is
b;x; minus this, which is

-1
> (@ — @)t — ),

k=0



where 2° = to = 0. To visualize this computation
consider the Figure 1, with the curve denoting z;(b_;, b;)
(whereas originally the curve in Figure 1 was the
probability of being selected as a winner, which is ~
q*z;(b_;,b;)). In our mechanism, the expected payment
by agent 17 is

7j—1

> (@37 — "3 (tri — ),

k=0

where ¢* is the probability that the sale to agent i is
not cancelled in Steps 3 and 4, if ¢ were to bid between
tr and txy1 (just as in Section 4.2). Thus, we are
comparing vertical strips of equal width, and height
ad — x* for FVCG as opposed to height ¢/z7 — ¢Fz®
for our mechanism. But

gz’ — (1 + eb)g*a”
(1 —e)g*(2? —a")

Pl — gt >
>

because ¢* € [¢*, ¢*(1 + €0)] and 27 > (1 + §)z* for all
k< j.

THEOREM 5.1. Suppose that each item j € T has
multiplicity m; = Q(In K), as in Proposition 3.1. Then
the expected revenue generated by RANDROUND is at
least (1—€)q* times the revenue generated by the FVCG
mechanism with multiplicities m;.

Under the same conditions on the multiplicities,
the probability of player ¢ actually winning is also at
least ¢*x;. Thus, the auction essentially implements
the FVCG mechanism on the artificially reduced multi-
plicities.

5.1 Comparing against the “optimal” mecha-
nism It is natural to ask how our revenue compares
with that of an “optimal” truthful mechanism, but it
turns out that even posing this question correctly is a
tricky endeavor. One truthful mechanism is to arbitrar-
ily select a feasible set W of possible winners, set fixed
prices P; for every bidder in that set, and refuse to sell
to any other players. Any player i with v; > P; will then
buy her set at price P;. If we happen to get lucky and
choose W to be the feasible set of bidders that maxi-
mizes the total valuation, and happen to choose P; = v;
for each i € W, then we reap the entire valuation as
revenue. However, this “omniscient mechanism” hardly
seems a fair benchmark. In fact, it is well-known that
even when auctioning just a single copy of a single item,
no truthful mechanism can always attain a guaranteed
fraction of the optimal valuation, because there is no
way to deal with a single astronomical bidder.

Therefore, in the single item case, [7, 8, 6, 10] sug-
gest comparing against variants of the VCG mechanism.
We have shown that our auction achieves expected rev-
enue approximately equal to that of the FVCG mecha-
nism with a slightly reduced supply of goods. It is easy
to construct a pair of examples showing that neither the
VCG nor the FVCG mechanism’s revenue dominates
the other. Moreover, it is well-known that artificially
decreasing the supply of goods can sometimes dramati-
cally increase revenues. (See [7] for a striking example.)
Therefore, it is unclear how the revenue compares with
that of the VCG mechanism using the full supply.

6 Lying about the set: an example

It is natural to ask if we can extend our method to
handle the case where the set S; is part of agent ¢’s
bid (i.e. the case of single-minded bidders, instead of
known single-minded bidders). The following example
shows that it is impossible to obtain a mechanism for
single-minded bidders that is strongly truthful with high
probability, if we want the probability that agent ¢ wins
to be roughly proportional to the fractional allocation
xz; given by the LP.

Suppose there are three items and three bidders.
One copy of each item is available. Suppose bidder 1
bids 2 for set {2,3} (the truth), bidder 2 bids 3 for set
{1,2} and bidder 3 bids 3 for set {1,3}. Then the LP
solves to z = (3, %, 1) (with total valuation 2). If bidder
1 lies by increasing her set to {1,2,3}, then the LP
solves to z = (1,0, 0) (with total valuation 2). Suppose
that we actually had three copies of each item available,
but were just using 1 as the reduced multiplicities.
Then no item is ever over-sold. Thus, our mechanism
(without the drop step) implements fractional VCG in
expectation, so is still truthful in expectation, but not
truthful with high probability because the lie increased
x1 from % to 1.

Let us flesh out the details. When player 1 bids
her true set, her probability p1(b_1, 1) of winning stays
constant at % for by € (0,3]. Thus, she wins at price 0
with probability %, and loses with probability %, for an
expected profit of 1.

If she lies about her set, then pq(b_1, b1) jumps from
Otolath = % Thus, with probability 1 she wins and
pays % So her expected profit decreases to % But when
her rounding variable y; lands in (%, 1] she does better
by lying, whereas when her rounding variable y; lands
in [0, %] she does better by telling the truth.

We can extend this example to arbitrarily high item
multiplicities by simply adding in appropriate bidders
7 who bid high enough that they are fully satisfied
(i.e. the optimal solution has z; = 1). Note that
in this case the reduced multiplicities are smaller than



the actual multiplicities only by an additive —2, not a
multiplicative %

7 Conclusions

We have shown a general technique to modify a linear
program rounding algorithm to make it monotone. This
gives an approximately efficient truthful (in expectation
and with high probability) mechanism for the combina-
torial auction problem with single parameter agents.

The simple rounding algorithm can be derandom-
ized using pessimistic estimators [15]. It would be in-
teresting to see if the algorithm can be derandomized
maintaining its monotonicity.

Finally, this scheme gives a truthful mechanism for
known single-minded bidders; an open problem is to
relax this constraint.
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