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Abstract. The celebrated Vickrey-Clarke-Grove(VCG) mechanism in-
duces selfish agents to behave truthfully by paying them a premium.
In the process, it may end up paying more than the actual cost to the
agents. For the minimum spanning tree problem, if the market is “com-
petitive”, one can show that VCG never pays too much. On the other
hand, for the shortest s-t path problem, Archer and Tardos [5] showed
that VCG can overpay by a factor of £2(n). A natural question that arises
then is: For what problems does VCG overpay by a lot? We quantify this
notion of overpayment, and show that the class of instances for which
VCG never overpays is a natural generalization of matroids, that we call
frugoids. We then give some sufficient conditions to upper bound and
lower bound the overpayment in other cases, and apply these to several
important combinatorial problems. We also relate the overpayment in an
suitable model to the locality ratio of a natural local search procedure.

Classification: Current challenges, Mechanism design.

1 Introduction

Many problems require the co-operation of multiple participants, e.g. several
autonomous systems participate to route packets in the Internet. Often these
participants or agents have their own selfish motives, which may conflict with
social welfare goals. In particular, it may be in an agent’s interest to misrep-
resent her utilities/costs. The field of mechanism design deals with the design
of protocols which ensure that the designer’s goals are achieved by incentivizing
selfish agents to be truthful. A mechanism is a protocol that takes the announced
preferences of a set of agents and returns an outcome. A mechanism is truthful
or strategy proof if for every agent, it is most beneficial to reveal her true pref-
erences.

Consider, for example the problem of choosing one of several contractors
for a particular task. Each contractor bids an amount representing her cost for
performing the task. If we were to choose the lowest bidder, and pay her what
her bid was, it might be in her interest to bid higher than her true cost, and
make a large profit. We may, on the other hand, use the VCG mechanism [24, 8,
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11] which in this case, selects the lowest bidder, and pays her an amount equal
to the second lowest bid. It can be shown that in this case, it is in the best
interest of every contractor to reveal her true cost (assuming that agents don’t
collude). Moreover, the task get completed at the lowest possible cost. The VCG
mechanism is strategy proof, and minimizes the social cost. On the other hand,
the cost to the mechanism itself may be large. In this case, for example, while the
task gets completed by the most efficient contractor, the amount the mechanism
has to pay to extract the truth is more than the true cost. In this paper, we
address the question: How much more?

We look at a more general setting where some task can be accomplished by
hiring a team of agents. Each agent performs a fixed service and incurs a fixed
cost for performing that service. There are some given teams of agents, such
that any one team can accomplish the complete task. The cost of each agent is
known only to the agent herself, and agents are selfish. While the VCG mech-
anism selects a team that performs the task with minimum cost to itself, the
amount that the mechanism pays to the agents may be high. We are interested
in characterizing problems where this payment is not too large. Archer and Tar-
dos [5] showed that in general, this payment can be {2(n) times the real cost,
even if there is sufficient competition.

It is not immediately clear what this payment should be compared to. Ideally,
we would like to say that we never pay too much more than the real cost of the
optimal. However, in a monopolistic situation, VCG can do pretty badly. So
we impose the condition that the market is sufficiently competitive(a notion
elucidated later), and we would be satisfied if our mechanism did well under
these constraints. Qualitatively, we want to say that a mechanism is frugal for
an instance if, in the presence of competition, the amount that the mechanism
pays is not too much more than the true cost. Concretely let opt be the most
cost-effective team for the task. We compare the amount that the mechanism
pays to the agents in opt to the cost of the best rival solution opt’, i.e. the best
solution to the instance that does not use any agent in opt. If it is the case that
opt and opt’ have exactly the same cost, it can be shown that VCG does not
over-pay, i.e. it pays exactly the cost of opt. However, if opt’ is a little costlier
than opt, the performance may degrade rapidly. We define the frugality ratio of
VCG on an instance to be the worst possible ratio of the payment to the cost
of opt’.! This definition turns out to be equivalent to the agents are substitutes
condition defined independently by [7] in a different context. We discuss the
implications of this in section 5.

Under this definition of frugality, we characterize exactly the class of prob-
lems with frugality ratio 1. This class is a natural generalization of the class
of matroids, which we call frugoids. We also give more general upper and lower
bounds on the frugality in terms of some parameters of the problem. Using these,
we classify several interesting problems by their frugality ratio. We also note a
very interesting connection between the notion of frugality, and the locality gap

! We show in section 3.1 how this definition of frugality relates well to the notion of
overpayment in the presence of competition.



of a natural local search procedure for the facility location problem; we discuss
this in section 4.

Related Work

The problem of mechanism design has classically been a part of game theory
and economics (see, e.g. [21], [18]). In the past few years, there has been a lot
of work the border of computer science, economics and game theory (see [22]
for a survey). Nisan and Ronen [19] applied the mechanism design framework
to some optimization problems in computer science. Computational issues in
such mechanisms have also been considered in various scenarios (see, e.g.[20],
[10], [15], [7],[6]). Work has also been done is studying efficienlty computable
mechanisms other than VCG for specific problems (e.g. [16],[4],[17],[3]).

The issue of frugality is raised in [4] who look at a scheduling problem and
compare the payment to the actual cost incurred by the machines under com-
petitiveness assumptions. In [5,9], the authors show that for the shortest path
problem, the overpayment is large even in the presence of competition. On the
positive side, [6] show that when the underlying optimization problem is a ma-
troid, the frugality ratio is 1. [12] relates frugality to the core of a cooperative
game.

The rest of the paper is organized as follows. In section 2, we define the
framework formally. We state and prove our results on frugality in section 3. In
section 4, we apply the results to several combinatorial problems, and in section
5, we consider some interesting implications. We conclude in section 6 with some
open problems.

2 Definitions and Notation

We first define formally the problem for which we analyze the performance of
VCG. We are given a set E of elements and a family F C 2F of feasible subsets
of E. We shall call (E,F) a set system. A set system (E,F) is upwards closed
if for every S € F and every superset T : S C T C E, it is the case that
T € F. We also have a non-negative cost function ¢ : E — Rq. For a set S C E,
let &(S) = > ,cg¢(e). The goal is to find a feasible set of minimum total cost.
Clearly for the minimization problem, there is no loss of generality in assuming
that (E,F) is upward closed. (E,F) is therefore fully defined by the minimal
sets in F. We shall henceforth represent a set system by its minimal feasible
sets (bases) B = {S € F : no proper subset of S is in F}. Note that the family
B may be exponential in size and given implicitly. Several problems such as
minimum spanning tree, shortest path, etc. can be put in this framework.

Now suppose that each element e € E is owned by a selfish agent, and
she alone knows the true cost ¢é(e) of this element. A mechanism is denoted as
m = (A, p) where

— A s an allocation algorithm that takes as input the instance (E, B) and the
revealed costs c(e) for each agent e, and outputs a set S € F.



— p is a payment scheme that defines the payment p(e) to be made to each
agent.

For the VCG mechanism, A selects the minimum cost feasible set. The payment
scheme p is as follows. Let OPT(c) be the cost of an optimal solution under cost
function ¢, i.e. OPT(c) = ming _pgc(S) and let opt(c) denote the set achieving
this minimum?. Let c[e — x| denote the cost function ¢’ which is equal to c
everywhere except at e, where it takes the value z. Then

ple,c) = {0 if e & opt(c)
’ OPT(c[e = o0]) — OPT(c[e — 0]) if e € opt(c)

It can be shown that the mechanism is ¢ruthful(see for example [18]). Hence
assuming that agents are rational, c(e) = é(e) for all agents. We denote by
OPT'(c) the cost of the cheapest feasible set disjoint from opt(c), i.e. OPT'(c) =
Mige B sropt(c)= 5{c(S)}. Note that such a set may not always exist, in which

case this minimum is infinite. If OPT'(c) is finite, let opt’(c) denote the set
achieving the minimum. For any set S C E, let p(S,c) = ), gp(e,c). For an
instance (E, B, ¢), such that OPT'(c) > 0, define the frugality ratio ¢(E,B,c) =
p(opt(c),c)/OPT'(c). (It OPT'(c) = 0, in which case p(opt(c),c) = 0 as well,
we shall define the frugality ratio to be 1.) For a set system (E, B), define the
frugality ratio of the the set system ¢(E, B) = sup, ¢(E, B, c).

An alternative definition of frugality, what we call the marginal frugality, is
the ratio of VCG overpayment to the difference in the costs of opt and opt'.
Formally, ¢'(E, B) = sup.(p(opt(c),c) — OPT(c))/(OPT'(c) — OPT(c)). In the
next section, we show how these two definitions are related. The following theo-
rem shows that the marginal frugality of a set system bounds the rate of change
of the payment with respect to the value of OPT". Thus the marginal frugality
behaves like the derivative of the payment with respect to OPT'(c). We omit
the proofs of the following from this extended abstract.

Theorem 1. Let (E,B) be a set system and let ¢ and ¢’ be cost functions such
that opt(c) = opt(c') = A, opt/(c) = opt'(c') = B, and c(e) = c'(e) for all
e & B. Then

p(A,c') —p(A,c) < ¢'(E,B) - (c'(B) — ¢(B))

Corollary 1.

¢'(E,B) = lim sup(p(4,c') —p(4,c))/e

e—0t

where the sup is over all c,c' satisfying the conditions in theorem 1 such that
' (B) —¢(B) =e.

Thus, the “slope” of the payment function with respect to OPT' is always less
than ¢', and is equal to ¢' at OPT' = OPT.

? We assume that ties are broken in a particular way, say opt(c) is the lexicographically
smallest set S € B such that ¢(S) = OPT(c), so that opt(c) is well defined.



3 Frugality

3.1 Canonical Cost functions
Call a cost function ¢ canonical if the following hold:

— ¢(e) = 0 for all e € opt(c).
— ¢(e) = oo for all e ¢ opt(c) U opt’(c).

The following lemma shows that for every set system (E, B), and every cost
function ¢, there exists a cost function ¢’ which is canonical, and has a higher
frugality ratio. Hence the definition of frugality ratio can be modified so as to
consider only canonical cost functions.

Lemma 1. Let (E, B) be a set system, and ¢ be a non negative cost function on
E. Then there is a cost function c' such that the following hold:

— ' is canonical.
- ¢(E,B,CI) Z ¢(E,B,C)
We omit the proof from this extended abstract.
It is easy to see that VCG payments satisfy the following properties.

Property 1. For every cost function ¢ such that OPT (¢) = OPT'(c), p(opt(c),c) =
OPT(c).

Property 2. For every cost function ¢ and every constant a > 0, p(opt(ac), ac) =
ap(opt(c), ¢).

The following lemma shows that under some constraints, VCG payments are
super-additive.

Lemma 2. Let ¢; be an arbitrary cost function and c2 be a canonical cost func-

tion such that opt(ci) = opt(cz) and opt'(c1) = opt'(c2). Let ¢ = ¢1 + co.
Then

p(opt(c),c) > p(opt(c1), c1) + plopt(cz), c2)

Proof. First note that opt(c) = opt(c1) = opt(ce) and opt/(c) = opt/(¢1) =
opt’(c2). Now let e be any element in opt(c). Then

p(e,¢) = OPT(c[e = x]) — OPT (c[e — 0])
[by definition]
> c1(opt(c[e = o0])) + ca(opt(cle = 00])) — c1(opt(c)) — c2(opt(c))
[Since c[e — 0](opt(c)) < c(opt(c))]
> c1(opt(ci[e = o)) + ca(opt(ca]e — 0])) — c1(opt(c))

[Since ¢(opt(c)) < c¢(opt(c)),ca is canonical]

= (c1(opt(ci[e = 0])) — c1(opt(ci[e = 0]))) + ca(opt(ca[e = )
[Since opt(ci[e — 0]) = opt(c)]
:p(eacl) +p(€,02) [ . . 1]

Summing over all e in opt(c), we get the desired result.



Lemmas 1 and 2 imply:

Corollary 2. Let (E,B) be a set system. Then for any € > 0, there is a cost
function ¢ such that OPT(c) = 1, OPT'(c) = (1 + ¢€) and p(opt(c),c) > 1+
¢(E, B)e.

Proof. (Sketch) Let ¢ be a canonical cost function achieving  a frugality ratio
of ¢(E, B). Let A = opt(c) and B = opt’(c). Since ¢ is canonical, by observation
1, we can assume that ¢(B) = 1. Let ¢’ be a cost function such that ¢'(a) = \,IT\

for a € A, c'(b) = \%I for b € B and ¢'(z) = 1 otherwise. Finally, consider the

cost function ¢’ + ec. By lemma 2, the claim follows.

Corollary 3. For any set system (E,B), ¢'(E,B) > ¢(E, B). Moreover, ¢(E,B) =
1i4f¢'(E,B) =1.

Lemma 1 shows that the worst frugality ratio is attained at a canonical cost
function, which is very non competitive. Thus it might seem that even when the
frugality ratio is large, the VCG mechanism could do well for cost functions we
care about. The above corollary however shows that if the frugality ratio is high,
there are competitive cost functions where the overpayment is large. On the
other hand, a low frugality ratio clearly implies that the overpayment is never
large. Thus our definition of frugality is a robust one.

We now note that for any canonical cost function ¢, the VCG payments have
a nice structure. The proof is simple and omitted from this extended abstract.

Proposition 1. Let ¢ be any canonical cost function. Then

ple,c) = min (T)
TCopt’(c):0pt(c)\{e}uTeF

3.2 Frugoids

For disjoint sets A,B € B, and any Y C B, we say that x € A is dependent
on Y with respect to A, B if £ cannot be replaced in A by some element of
B\Y,ie. if for any y € B\Y,A\ {z} U{y} is not feasible. Define the set
of dependents of Y with respect to A,B as DAB(Y) = {z € A: A\ {z} U
{y} is not feasible for any y € B\ Y'}.

Call a set system (E, B) a frugoid if for every pair of disjoint sets A, B € B and
every Y C B, |DA®(Y)| < |Y|. The following proposition shows that matroids
satisfy the above condition for every pair of bases A and B (not necessarily
disjoint).

Proposition 2. Let (E,B) be a matroid. Then for any A,B € B and anyY C
B, [IDAP(Y) < Y]

3 We assume for simplicity that there is a cost function attaining the frugality. Similar
results would hold if this was not the case.



Proof. From the definition of matroids, it follows that any two base sets have the
same cardinality. Also for any base sets S and T and any set 7" C T satisfying
IT'| < |T|, there exists S’ C S\ T' with |S'| = |S| — |T"| such that T' U S’
is a base set. Now consider any A, B € B and let Y C B be arbitrary. Since
[B\Y| < |B| and A,B € B, there exists X C A with |X| = |Y| such that
(B\Y)UX € B. We shall show that DAB(Y) C X, from which the claim
follows. Consider any a € A\ X. Since |4\ {a}| < |A| and (B\Y)U X € B,
there exists a b € (B\Y)UX)\ (4\ {a}) such that A\ {a} U {b} is a base set.
However, then b must belong to B\ Y. Thus a ¢ D4-5(Y’). Since a was arbitrary,
D4B(Y) contains no elements from A \ X, and hence must be contained in X.

Thus every matroid is a frugoid. We give below an example of a set system which
is a frugoid but not a matroid.

Ezample 1. Consider the set system (E;,B1) where Ey = {a1,a2,b1,b2,¢1,¢2}
and B; contains the following sets:

{alablacl} {a27blacl} {a17b2acl} {alvblch}
{a27b27c2} {a17b2762} {a27b1702} {a27b27cl}
{a1,a2}

Since any pair of disjoint sets in B; come from the matroid (E1, By \ {{a1,a2}}),
it is a frugoid.

The following theorem gives an exact characterization of set systems that have
frugality ratio at most one.

Theorem 2. A set system (E,B) is a frugoid iff ¢(E,B) < 1.

Proof. (proof of =) From Lemma 1, it suffices to show that for all canonical cost
functions ¢, ¢(E,B,c) < 1. Let ¢ be a canonical cost function, let A = opt(c)
and B = opt/(c). We need to show that p(A) < ¢(B). We shall find a one-one
mapping 7 from A to B such that for all a € A,p(a) will be no more than
¢(m(a)). The claim would then follow. Consider a bipartite graph with vertex
set AU B, and an edge between a and b if (A4 \ {a}) U {b} is feasible (and hence
p(a) < ¢(b)). The condition |D4-B(Y)| < |V implies that there is no Hall set in
A (recall that a hall set is a set A such whose neighbourhood is of size strictly
smaller than A itself). Hall’s theorem [13](see [14] for a proof) then implies that
we can find such a mapping. The claim follows.

(Proof of <) We first show that any two disjoint base sets must have the
same cardinality. Assume the contrary. Let A and B be disjoint sets with different
cardinalities. Without loss of generality, |A| > |B|. Consider the cost function ¢

defined as follows:
0 ifeecA

cley=<¢1 ifeeB
oo otherwise

Now consider any e € A. Since A\ {e} is not feasible, p(e,¢) > 1. Thus p(4,c) >
|A|. On the other hand, ¢(B) = |B| < |A|. This contradicts the fact that frugality
ratio of (E, B) is at most 1.



Now suppose the condition is violated for some A, B,Y . Consider the canon-
ical cost function ¢ defined as follows:

0 ifeecd
_ )1 ifeeB\Y
=92 ifecy
oo otherwise

Again, for any e € A, p(e,c¢) > 1. Moreover, from the definition of depen-
dency, for any e € A which is 1-dependent on Y, p(e,c) > 2. Thus p(A4,c¢) >
|A| + |DAB(Y)|. On the other hand, ¢(B) = |B| + |Y|. Since |A| = |B| and
|IDAB(Y)| > |Y|, #(E,B,c) > 1, which is a contradiction. Hence the claim
follows.

3.3 Non frugoids

For systems which are not frugoids, we give some upper bounds on the frugality
ratios.

Analogous to the definition of dependence, we define k-dependence as follows.
For disjoint sets A, B € B, and any Y C B, we say that = € A is k-dependent
on Y with respect to A, B if z cannot be replaced in A by at most k elements
of B\Y,ie if for any X C B\Y : |X| < k,A\ {z} U X is not feasible.
Define the set of k-dependents of Y with respect to A, B as D,’:’B(Y) ={reA:
A\ {z} U X is not feasible for any X C B\ Y, |X| < k}.

Theorem 3. The following hold:
(i) Let (E,B) be a set system such that for every pair of disjoint sets A and
B, and for some positive integer k, and for all Y C B, it is the case that

o

k% < f. Then the frugality ratio ¢(E,B) < f.

(i) Let (E,B) be a set system such that the size of each set in B is at most l.
Then ¢(E,B) <.

(i) Let (E,B) be a set system instance derived from a set cover problem where
each set is of size at most k. Then ¢(E,B) < k.

Proof. The proof of (i) is analogous to theorem 2. (ii) is immediate from the
fact that for any e € opt(c), p(e,c¢) < OPT'(c). We prove (iii) below. Let ¢ be
a canonical cost function. Consider any edge e in opt(c). Since ¢ is canonical,
p(e,c) < ¢(T,) for any T, C opt'(c) such that opt(c) \ {e} U T, is feasible. We
construct one such T, as follows. For each v’ € e that is covered only by e in
opt(c), add to T, an arbitrary set e’ from opt'(c) that covers v. We say then
that e requires €' to cover v'. We now show that 2_ecopt(c) c(Te) < kOPT'(c).
Let €'’ = {v],v5,...,v;} be any set in opt'(c). If v} is covered more than once
in opt(c), no set in opt(c) requires e’ to cover v]. Otherwise, for each v},
there is at most one set in opt(c) that requires e to cover vj. Hence in all,
at most k T,’s for e € opt(c) contain e”. Now p(opt(c),e) < Eeeopt(c) c(T,) =

D encopt!(c) 2oecopt(c)erer, €(€”) < ke(opt'(c)). Hence the claim follows.



The same upper bounds can be shown on the marginal frugality ¢’ as well.
We omit the proof from this extended abstract.
We now state some simple lower bounds on the frugality of set systems.

Theorem 4. The following hold:
(i) Let (E,B) be a set system such that B contains two disjoint sets A and B

such that |A| = a|B|. Then ¢(E,B) > a.
(i) Let (E,B) be a set system such that B contains two disjoint sets A and B
such that for all a € A, for allY C B of cardinality less than k, A\ {a}UY

is not feasible. Then ¢(E,B) > k%.

Proof. Consider the cost function:

0 ifecd
cle)=<1 ifeeB
oo otherwise

It is easy to check that this cost function gives the lower bounds in both cases.

Note that because of corollary 3, these lower bounds apply to the marginal
frugality ¢' as well.

In the next section, we use these results to estimate the frugality ratio of
several important combinatorial problems.

4 Examples

For a class of set system instances, we define the frugality ratio of the class as the
largest frugality ratio for an instance from the class. For example, from theorem
2, it follows that the minimum spanning tree problem on graphs (being a ma-
troid) has frugality 1. Figure 1 tabulates some simple consequences of theorems
3 and 4.

Problem Frugality ratio| Theorems used

Any matroid problem 1 Prop.2 and Thm. 2
Vertex Cover with maximum degree d d Thms. 2(ii) and 3(i)
Edge Cover 2 Thms. 2(ii) and 3(ii)
Bipartite graph matching O(n) Thms. 2(ii) and 3(ii)
Minimum cut O(n) Thms. 2(ii) and 3(i)
Minimum vertex cut O(n) Thms. 2(ii) and 3(i)
Dominating set O(n) Thms. 2(ii) and 3(i)

Set cover - each set of size k k Thms. 2(iii) and 3(ii)
Uncapacitated facility location 4 See discussion below

Fig. 1. Frugality ratios of some combinatorial problems



Frugality and locality ratio

We note an interesting connection between frugality and locality ratio of a
natural local search procedure for the facility location problem. The notion
of frugality here is slightly different. We assume that the facilities are owned
by agents, and only they know the facility cost. The distances however are
well known. Analogous to the locality ratio analysis (theorem 4.3) of Arya
et.al. [2], we can show that the payment to the facilities in opt is no more than
(costy(opt) + 2costs(opt’) + 3costs(opt’)) where costs() and costs() denote the
facility and the service costs of a solution. Thus the total “expenditure” in this
case is (costy(opt) + 2costy(opt’) + 3costs(opt')) + costs(opt) < 4cost(opt’).
We omit the details from this extended abstract.

5 Discussion

In this section, we look at some interesting implications of the positive and
negative results of the previous sections.

We first look at the problem of computing the VCG payments. In general, this
requires solving an optimization problem for finding the optimal solution, and
then solving one optimization problem for each agent in the optimal solution.
[7] show that whenever the “agents are substitutes” condition holds, all the
VCG payments can be computed using the variables in the dual of a linear
programming formulation of the underlying optimization problem. (Intuitively,
the dual variables correspond to the effect of the corresponding primal constraint
on the value of the optimal, which is precisely the “bonus” to the agent in VCG).
Since the “agents are substitutes” condition is equivalent* to the set system
having frugality ratio 1, the VCG payment for frugoids can be computed by
solving a single linear program and its dual.

One criticism of VCG is that it requires all agents to divulge their true
values to the auctioneer (and hence trust the auctioneer to not somehow use
this information, e.g. in similar cases in the future). A suggested solution to this
is to design iterative mechanisms, where agents respond to a sequence of offers
made by the auctioneer. This has the advantages of simplicity and privacy (see
e.g. [1], [23],etc. for further arguments in favour of iterative auctions). [7] also
show that under the “agents are substitutes” condition, an iterative mechanism
can be designed that gives the same outcome as the VCG mechanism. This, then
holds for all frugoids. Moreover [6] conjecture that if the substitutes condition
does not hold, there is no iterative mechanism yielding the Vickrey outcome.
Assuming this conjecture then, frugoids is exactly the class of minimization
problems which have iterative mechanisms implementing the social optimum.

We also note that in general, VCG is the only truthful mechanism that selects
the optimal allocation and satisfies individual rationality. Moreover, since every
dominant strategy mechanism has an equivalent truthful mechanism (the reve-
lation principle), better frugality ratios cannot be achieved by any mechanism

4 We omit the simple proof from this extended abstract



while maintaining optimality. However by imposing some additional restrictions,
the class of truthful mechanisms can be made larger and more frugal mechanisms
can be designed.

While we have addressed the questions of frugality of exact mechanisms, it
turns out that approximate mechanisms need not even be approximately frugal,
even for frugoids. In fact, there is a constant factor approximation algorithm for
the minimum spanning tree problem that can be implemented truthfully, but
the resulting mechanisms has frugality ratio £2(n).

6 Conclusion and Further Work

We have defined the frugality ratio which is a robust measure of the economic
performance of a mechanism in the presence of competition. We show that fru-
goids, a natural generalization of matroids is the exact class of problems with
frugality ratio 1. We also give lower and upper bounds on the frugality ratio of
set systems. We use these to estimate the frugality of several interesting combi-
natorial problems. An exact characterization of set systems with frugality ratio
exactly k for k > 1 is an interesting open problem. Further, while it turns out
that some important problems have large frugality ratios in the worst case, it
would be interesting to see if we can get better positive results by restricting the
instances and/or restricting the cost functions in some reasonable way.

We also define the notion of marginal frugality and show that it is always
lower bounded by the frugality ratio. We leave open the intriguing question of
whether or not they are equal.
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A  Proof of lemma 1

Lemma 1
Let (E, B) be a set system, and ¢ be a non negative cost function on E. Then
there is a cost function ¢’ such that the following hold:

— (! is canonical.
- ¢(E,B,CI) Z ¢(E7B7C)

Proof. We change ¢ to a canonical cost function ¢/. We do so via a sequence of
intermediate cost functions, such that the payment to the optimum goes up at
each step. Let ¢ be equal to ¢ on opt(c) U opt’'(c) and oo otherwise. Now,
p(e,c) = OPT (cle = oc]) — OPT(c[e — 0Q])

= OPT(c[e = 0]) — (c(opt(c)) — c(e))

< OPT(chle = o0]) — (co(opt(c)) — ch(e))

= p(e, ¢g)
where the equality in step 2 holds because e € opt(c) and the inequality in step 3
follows from the fact that c{(e) > c(e) for all e € E. Now let opt(c) = opt(cg) =
{e1,€2,...,er}. Define ¢} as follows:

0 ifee{er,...,e}

ci(e) =< cle) if e € opt'(c) U {€it1,--- €k}
oo otherwise

)_
)_

It is easy to see that the cost function ¢’ = ¢}, is canonical, and that opt(c) =
opt(c’) and opt'(c) = opt’(c’). Now
plei, ;) = OPT(cile; = o0]) — (¢;(opt(c)) — c(ei))
= OPT(cjfei = od]) = (cj_1(opt(c)) — cj_1(ei))
= OPT(c;_y[e; = o0]) — (¢j_1 (opt(ci_y)) — cf_y(ei))
= OPT(c;_,[e; = 0]) — OPT(c;_,[e; — 0])

= p(ei, ¢i_1)
and
plej, ¢;) = OPT(clej — oc]) — OPT(ci[e; — 0])
= OPT(ci[ej > oo]) — (ci(opt(c)) — cile;))
= OPT(ci[e; = o0]) — ((cj_1 (opt(c)) — c(es)) — ci(e;))
= OPT(cilej = o0]) + c(e;) — (cf_1(opt(ci_1)) — ¢i_1(e;))

> OPT(cj_y[ej = o0]) — (¢j_1 (opt(ci_1)) — ¢i_1(€)))

= p(e.i: c;—l)
where the inequality follows from the fact that opt(cj[e; — o0]) is a feasible set
with cost OPT(c}[e; — o0]) + c(e;) under ¢}_;.

Thus p(opt(c;),cj) > p(opt(c; 1), ¢;—1)- Thus plopt(c'),¢’) < p(opt(c),c).
Also OPT'(c) = OPT'(c"). Hence the claim follows.



