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Abstract. We give a new proof for the fact that the expected gap be-
tween the maximum load and the average load in the two-choice process
is bounded by (1 + o(1)) log logn, irrespective of the number of balls
thrown. The original proof of this surprising result, due to Berenbrink
et al. in [2], uses tools from Markov chain theory, and a sophisticated
induction proof involving computer-aided calculations. We provide a sig-
nificantly simpler and more elementary proof. The new technique allows
us to generalize the result and derive new and often tight bounds for the
case of weighted balls. The simplification comes at a cost of larger lower
order terms and a weaker tail bound for the probability of deviating from
the expectation.

1 Introduction

Balls-and-Bins processes are a name for randomized allocations processes, typi-
cally used to model the performance of hashing or more general load balancing
schemes. Suppose there are m balls (think items) to be thrown into n bins (think
hash buckets). We want a simple process that will keep the loads balanced, while
allowing quick decentralized lookup. One of the simplest such process is the Balls-
and-Bins process where balls are placed sequentially via some simple randomized
allocation process, and not moved once placed. There are other approaches to
the problem that we will not discuss here. A significant body of work had been
amassed on the analysis of simple and natural versions of these Balls-and-Bins
processes. In this work we present a simpler analysis for the heavily loaded case
for many of these processes.

In the Greedy[d] process (sometimes called the d-choice process), balls are
placed sequentially into n bins with the following rule: Each ball is placed by
uniformly and independently sampling d bins and assigning the ball to the least
loaded of the d bins1. In this paper we are interested in the gap of the allocation,
which is the difference between the number of balls in the heaviest bin, and the
average. The case d = 1, when balls are placed uniformly at random in the
bins, is well understood. In particular when n balls are thrown, the bin with
the largest number of balls will have Θ(log n/ log log n) balls w.h.p. Since the
average is 1, asymptotically this is also the gap. If m � n balls are thrown the

1 Assume for simplicity and w.l.o.g that ties are broken according to some fixed or-
dering of the bins.



heaviest bin will have m/n + Θ(
√
m log n/n) balls w.h.p. [9]. In other words

Gap(m) = Θ(
√
m log n/n) w.h.p.

In an influential paper Azar et al. [1] showed that when n balls are thrown
and d > 1 the gap2 is log log n/ log d+ O(1) w.h.p. The case d = 2 is implicitly
shown in Karp et al. [4]. The proof by Azar et al. uses a simple but clever
induction; in our proof here we take the same approach. The proof in [1] breaks
down once the number of balls is super-linear in the number of bins. Two other
approaches to prove this result, namely, using differential equations or witness
trees, also fail when the number of balls is large (see for example the survey [5]).
A breakthrough was achieved by Berenbrink et al. in [2]:

Theorem 1 ([2]). For every c > 0 there is a γ = γ(c) so that for any given
m ∈ N,

Pr[Gap(m) ≥ log log n

log d
+ γ] ≤ n−c

Thus the additive gap remains at log log n even after m � n balls are thrown!
Contrast this with the one choice case in which the gap diverges with the number
of balls. At a (very) high level their approach was the following: first they show
that the gap after m balls are thrown is distributed similarly to the gap after
only poly(n) balls are thrown. This is done by bounding the mixing time of an
underlying Markov chain. The second step is to extend the induction technique
of [1] to the case of poly(n) balls. This turns out to be a major technical chal-
lenge which involves four inductive invariants and computer-aided calculations.
Furthermore, whenever the model is tweaked, this technically difficult part of
the proof needs to be redone, making such changes challenging. As such, finding
a simpler proof has remained an interesting open problem [7].

1.1 Our Contributions

In this paper we present a simple proof for a bound similar to that of Theorem 1.

Theorem 2. For any m, the expected gap between maximum and average of
Greedy[d] is at most log logn

log d +O(log log log n). Moreover for an absolute constant
c,

Pr[Gap(m) >
log log n

log d
+ c log log log n] ≤ c(log log n)−4

Our proof builds on the layered induction approach of Azar et al. [1]. The
basic layered induction approach bounds the number of bins containing at least
h balls, by using an induction on h. This approach runs into several issues when
trying to go beyond O(n) balls, the most crucial of these is establishing the base
case for the induction: When the number of balls is n it trivially holds that the
number of bins that received at least 2 balls is at most n/2. When m >> n there

2 Unless otherwise stated, all logs in this paper are base 2.



is no straightforward argument to claim that the number of bins with load above
the average is at most n/2. We show that the potential function approach of [8]
allows us to surmount these hurdles: the bound from the potential function lets
us restrict ourselves to the last Õ(n log n) balls, and also gives us a suitable base
case for the layered induction.

Our proof is relatively short and accessible. This simplicity comes at a price.
Our bound is slightly weaker than Theorem 1 as it has larger lower order terms.
We also have a weaker tail bound on the probability of deviation from expecta-
tion (see Section 2).

On the positive side the simple proof structure allows for easier generalization
and we can obtain bounds on similar processes without much added difficulty.
These include a bound on Vöcking’s Left[d] process (also shown in [2]) which
we present in Section 3.2, as well as tight bounds on processes with weighted
balls, which were previously unknown. For instance suppose that each ball has
a weight sampled uniformly from the set {1, 2}. in Section 3.1, we show that the
gap is upper bounded by 2 log log n up to lower order terms. This improves on
the previously best known bound of O(log n).

We also show lower bounds for the weighted case that match our upper
bounds for several interesting distributions. In particular, for the case of weights
in {1, 2}, we show that the upper bound of 2 log log n is tight up to lower order
terms.

Another way to characterize the d-choice process is by defining the probability
a ball is placed in one of the i heaviest bins (at the time when it is placed) to be
exactly (i/n)d. We remark that using this characterization, there is no need to
assume that d is a natural number. While the process is algorithmically simpler
to describe when d is an integer, natural cases arise in which d is not an integer,
c.f. [12]. Our approach, being based on layered induction, naturally extends to
this setting for any d > 1.

2 The Main Proof

We define the normalized load vector Xt to be an n dimensional vector where Xt
i

is the difference between the load of the i’th bin after tn balls are thrown and the
average t, (so that a load of a bin can be negative and

∑
Xi = 0). We also assume

without loss of generality that the vector is sorted so that Xt
1 ≥ Xt

2 ≥ ... ≥ Xt
n.

We will consider a Markov chain with state space Xt, where one step of the
chain consists of throwing n balls according to the d-choice scheme and then
sorting and normalizing the load vector.

The main tool we use is the following Theorem proven in [8] using a potential
function argument.

Theorem 3 ([8]). For every d > 1 there exist positive constants a and b such
that for all n and all t,

E

[∑
i

exp
(
a|Xt

i |
)]
≤ bn.



Let Gt
def
= Xt

1 denote the gap between maximum and average when sampling
from Xt. Applying Markov’s inequality to Theorem 3 immediately implies the
following:

Lemma 1. For any t, any c ≥ 0, Pr[Gt ≥ c logn
a ] ≤ bn

nc . Thus for every c there
is a γ = γ(c) such that Pr[Gt ≥ γ log n] ≤ n−c.

We remark that Theorem 3 is a statement about the absolute values of the
Xt
i ’s and thus a version of Lemma 1 holds also for the gap between the minimum

and the average. This bound is tight up to constant factors: the lightest bin
indeed trails the average by a logarithmic number of balls (see e.g. [8]). The
challenge is therefore to use a different technique to “sharpen” the bound on the
gap between maximum and average. We do this next by showing that if the gap
is indeed bounded by log n, then after additional n log n balls are thrown the
gap is reduced to log log n.

The crucial lemma, that we present next, says that if the gap at time t is L,
then after throwing another nL balls, the gap becomes log log n+O(logL) with
probability close to 1. Roughly speaking, our approach is to apply the lemma
twice, first with L = O(log n) taken from Theorem 3. This reduces the bound to
O(log log n). A second application of the lemma with L = O(log log n) implies
Theorem 2. While Theorem 2 holds for any d > 1, for ease of exposition we
assume in the following that d = 2. Generalizing for any d > 1 requires nothing
more than choosing the constants appropriately and is done in the full version
of the paper.

Lemma 2. There is a universal constant γ such that the following holds: for
any t, `, L such that 1 ≤ ` ≤ L ≤ n 1

4 and Pr[Gt ≥ L] ≤ 1
2 ,

Pr[Gt+L ≥ log log n+ `+ γ] ≤ Pr[Gt ≥ L] +
16bL3

exp(a`)
+

1

n2
,

where a, b are the constants froms Theorem 3.

Intuition: The lemma is relatively straightforward to prove using the layered
induction technique: For a specific ball to increase the number of balls in a bin
from i to i+ 1, it must pick two bins that already contain at least i balls. If we
assume inductively that the fraction of bins with at least i balls when this ball
is placed is at most βi, then this probability is at most β2

i and thus there are
(on expectation) at most nLβ2

i bins with load at least i + 1. Roughly speaking
this implies that βi+1 ≈ Lβ2

i . While the βi’s are a function of time, they are
monotonically increasing and using the final βi value would give us an upper
bound on the probability of increase. The main challenge is to obtain a base
case for the induction. Theorem 3 provides us with such a base case, for bins
with ` more balls than the average in Xt+L. For simplicity, the reader may think
of L as O(log n) and ` as O(log log n). With these parameters Theorem 3 implies
that the fraction of bins with load at least ` = O(log log n) (at time t + L)
is at most 1

4 logn , so the β’s shrink in each induction step even though n log n
balls are thrown. As mentioned above, we will use the lemma a second time for
L = O(log log n) and ` = O(log log log n).
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Fig. 1. Black balls are in X, nL white balls are thrown to obtain X ′

Proof (Lemma 2). We sample an allocation Xt and let Gt be its gap. Now take
an additional L steps of the Markov chain to obtain Xt+L: in other words, we
throw an additional nL balls using the 2-choice process. For brevity, we will use
X,G,X ′, G′ to denote Xt, Gt, Xt+L, Gt+L respectively. We condition on G < L
and we prove the bound for G′. Let L′ = log log n+ `+ γ. Observe that:

Pr[G′ ≥ L′] ≤ Pr[G′ ≥ L′ | G < L] + Pr[G ≥ L] (1)

It thus suffices to prove that Pr[G′ ≥ L′ | G < L] ≤ 16bL3

exp(a`) + 1
n2 . We do this

using a layered induction similar to the one in [1].
Let νi be the fraction of bins with normalized load at least i in X ′ (i.e.

containing t + L + i balls or more), we will define a series of numbers βi such
that νi ≤ βi with high probability. To convert an expectation bound to a high
probability bound, we will use a Chernoff-Hoeffding tail bound as long as βin is
large enough (at least log n). The case for larger i will be handled separately.

By Theorem 3 and Markov’s inequality,

Pr[ν` ≥
1

8L3
] ≤ 8bL3

exp(a`)
,



which along with the assumption Pr[G < L] ≥ 1
2 implies that

Pr[ν` ≥
1

8L3
| G < L] ≤ 16bL3

exp(a`)
. (2)

We will set β` = 1
8L3 as the base of the layered induction. We next define the

series βi.
Let i∗ = ` + log log n. Recall that we set β` = 1

8L3 . For i = `, . . . , i∗ − 1
we set βi+1 = max(2Lβ2

i , 18 log n/n). It is easy to check that βi∗ = 18 log n/n.
Indeed suppsose that the truncation does not come into play until i∗. Then the
recurrence

log β` = −3 log(2L),

log βi+1 = 2 log βi + log(2L)

solves to log β`+k = (log 2L)(−3 ·2k+(2k−1)) so that log βi∗ = log β`+log logn ≤
(log 2L)(−2 log n). This is at most −2 log n as L ≥ 1 so that βi∗ ≤ 1

n2 which is
smaller than the truncation threshold, contradicting the assumption.

The inductive step is encapsulated in the next lemma. The proof is a simple
expectation computation, followed by an application of the Chernoff-Hoeffding
bound. We will use B(n, p) to denote a binomially distributed random variable
with parameters n and p.

Lemma 3. For any i ∈ [`, i∗ − 1], we have

Pr[νi+1 > βi+1 | νi ≤ βi, G < L] ≤ 1

n3
.

Proof. For convenience, let the balls existing in X be black, and let the new nL
balls thrown be white. We define the height of a ball to be the load of the bin
in which it was placed relative to X ′, that is, if the ball was the k’th ball to be
placed in the bin, the ball’s height is defined to be k − (t+ L). Notice that the
conditioning that G < L implies that all the black balls have a negative height.
We use µi to denote the number of white balls with height ≥ i. Thus for any
i ≥ 0, we have νin ≤ µi and thus it suffices to bound µi.

For a ball to have a height of at least i+ 1, it should pick two bins that have
load at least i when the ball is placed, and hence at least as much in X ′. Thus
the probability that a ball has height at least i+1 is at most ν2i ≤ β2

i ≤ βi+1/2L
under our conditioning. Since we place nL balls, the number of balls with height
at least i+1 is dominated by a B(nL, βi+1/2L) random variable. Chernoff bounds
(e.g. Theorem 1.1 in [?]) imply that the probability that Pr[B(n, p) ≥ 2np] ≤
exp(−np/3). Thus

Pr[νi ≥ β2
i+1 | νi ≤ βi] ≤ Pr[B(nL, βi+1/2L) ≥ βi+1n]

≤ exp(−βi+1n/6)

≤ 1/n3.

since βi+1n ≥ 18 log n. ut



It remains to bound the number of balls with height ≥ i∗. To this end we
condition on νi∗ ≤ βi∗ , and let H be the set of bins of height at least i∗ in X ′.
Once a bin reaches this height, an additional ball falls in it with probability at
most (2βi∗n + 1)/n2. The probability that any specific bin in H gets at least
4 balls after reaching height i∗ is then at most Pr[B(nL, (2βi∗n + 1)/n2) ≥ 4].
Recalling that Pr[B(n, p) ≥ k] ≤

(
n
k

)
pk ≤ (enp/k)k. Using this estimate and

applying a union bound over the bins in H, we conclude that

Pr[νi∗+4 > 0 | νi∗ ≤ βi∗ , G < L] ≤ (18 log n)× (eL(32 log n+ 1)/4n)4)

≤ 1

2n2
, (3)

as long as n exceeds an absolute constant n0. On the other hand, Lemma 1
already implies that for n ≤ n0, Lemma 2 holds with γ = O(log n0) so that this
assumption is without loss of generality.

Finally a union bound using (2) and Lemma 3 and (3), we get that

Pr[νi∗+4 > 0 | G < L]

≤ Pr[ν` ≥ β` | G < L] +

i∗−1∑
i=`

Pr[νi+1 > βi+1 | νi ≤ βi, G < L]

+ Pr[νi∗+4 > 0 | νi∗ ≤ βi∗ , G < L]

≤ 16bL3

exp(a`)
+

log log n

n3
+

1

2n2

≤ 16bL3

exp(a`)
+

1

n2
.

This concludes the proof of Lemma 2. ut

Lemma 2 allows us to bound Pr[Gt+L ≥ log log n+O(logL)] by Pr[Gt ≥ L]+
1

poly(L) . Since Pr[Gt ≥ O(log n)] is small, we can conclude that Pr[Gt+O(logn) ≥
O(log log n)] is small. Another application of the lemma, now with L = O(log log n)
then gives that Pr[Gt+O(logn)+O(log logn) ≥ log log n + O(log log log n)] is small.
We formalize these corollaries next.

Corollary 1. There is a universal constant γ such that for any t ≥ (12 log n)/a,
Pr[Gt ≥ (5 + 10

a ) · log log n+ γ] ≤ 2
n2 + 1

log4 n
.

Proof. Set L = 12 log n/a, and use Lemma 1 to bound Pr[Gt−L ≥ L]. Set ` =
log(16bL3 log4 n)/a in Lemma 2 to derive the result. ut

Corollary 2. There are universal constants γ, α such that for any t ≥ ω(log n),
Pr[Gt ≥ log log n+ α log log log n+ γ] ≤ 3

n2 + 1
log4 n

+ 1
(log logn)4 .

Proof. Set L = log(16b( 12 logn
a )3 log4 n)/a = 7 log logn

a + Oa,b(1) and use Corol-
lary 1 to bound Pr[Gt−L ≥ L]. Set ` = log(16bL3(log log n)4)/a to derive the
result. ut



This proves that with probability (1 − o(1)), the gap is at most log log n +
o(log log n). We can also use Lemma 2 to upper bound the expected gap. Towards
this end, we prove slight generalizations of the above corollaries:

Corollary 3. There is a universal constant γ such that for any k ≥ 0, t ≥
(12 log n)/a, Pr[Gt ≥ (5 + 10

a ) · log log n+ k + γ] ≤ 2
n2 + exp(−ak)

log4 n
.

Proof. Set L = 12 log n/a, and use Lemma 1 to bound Pr[Gt−L ≥ L]. Set ` =
k + log(16bL3 log4 n)/a to derive the result. ut

Corollary 4. There are universal constants γ, α such that for any k ≥ 0, t ≥
ω(log n), Pr[Gt ≥ log log n+ α log log log n+ k + γ] ≤ 3

n2 + 1
log4 n

+ exp(−ak)
(log logn)4 .

Proof. Set L = log(16b( 12 logn
a )3 log4 n)/a = 7 log logn

a + Oa,b(1) and use Corol-
lary 3 with k=0 to bound Pr[Gt−L ≥ L]. Set ` = k+ log(16bL3(log log n)4)/a to
derive the result. ut

Using the above results, we can now prove

Corollary 5. There are universal constants γ, α such that for t ≥ ω(log n)
E[Gt] ≤ log log n+ α log log log n+ γ.

Proof. Let `1 = log log n+α log log log n+ γ1 for α, γ1 from Corollary 4, and let
`2 = (5 + 10

a ) · log log n+ γ2 for γ2 from Corollary 3. Finally, let `3 = 12 log n/a.
We bound

E[Gt] ≤ `1 +

∫ `2

`1

Pr[Gt ≥ x] dx+

∫ `3

`2

Pr[Gt ≥ x] dx+

∫ ∞
`3

Pr[Gt ≥ x] dx

Each of the three integrals are bounded by constants, using Corollaries 4 and 3
and Lemma 1 respectively. ut

All that remains to prove the d = 2 case of Theorem 2 is to show that the
lower bound condition on t is unnecessary.

Lemma 4. For t ≥ t′, Gt
′

is stochastically dominated by Gt. Thus E[Gt
′
] ≤

E[Gt] and for every k, Pr[Gt
′ ≥ k] ≤ Pr[Gt ≥ k].

Proof (sketch). We use the notion of majorization, which is a variant of stochas-
tic dominance. See for example [1] for definitions. Observe that trivially X0 is
majorized by Xt−t′ . Now throw nt′ balls using the standard coupling and get
that Xt′ is majorized by Xt. The definition of majorization implies the stochas-
tic dominance of the maximum and the bounds on the expectation and the tail
follow.

3 Extensions

The technique we use naturally extends to other settings.



3.1 The Weighted Case

So far we assumed all balls are identical. Often balls-and-bins processes model
scenarios where items are not necessarily of uniform size but are heterogenous.
A natural way to extend the model is to assign weights to the balls drawn from
some distribution. We use the model proposed in [10] and also used in [8]. Every
ball comes with a weight W independently sampled from a non-negative weight
distribution W. The weight of a bin is the sum of weights of balls assigned to
it. The gap is now naturally defined as the difference between the weight of the
heaviest bin and the average bin. We observe that by multiplying all weights by
the appropriate constant we can normalize the distribution so that E[W] = 1.
In [10] it is shown that if W has a bounded second moment and satisfies some
additional mild smoothness condition, then the expected gap does not depend
on the number of balls. However, no explicit bounds on the gap are shown. In [8]
it is shown that if W satisfies E[exp(λW )] <∞ for some λ > 0, then the gap is
bounded by O(log n) (with λ effecting the hidden constant in O notation). For
some distributions, such as the exponential distribution, this bound is tight. A
bound of O(log n) does not necessarily remain tight as the distribution becomes
more concentrated.

Consider for example the case where the size of each ball is drawn uniformly
from {1, 2}. Previous techniques such as [2] fail to prove an O(log log n) bound in
this case, and the best bound prior to this work is the O(log n) via the potential
function argument of [8].

The fact that Theorem 3 holds means that the techniques of this paper can
be applied. The modifications needed are straightforward. The layered induction
argument works as is, with the only change being that we go up in steps of size
two instead of one. This shows a bound of 2 log logn + O(log log log n) for this
distribution, which we soon show is tight up to lower order terms.

Generalizing the argument, for a weight distribution W with a bounded ex-
ponential moment generating function, let M be the smallest value such that
Pr[W ≥ M ] ≤ 1

n logn(log logn)5 (the constant 5 here is somewhat arbitrary, and

will only affect the probability of the gap exceeding the desired bound). Then
carrying out a proof analogous to Lemma 2, with step size M gives us a bound of
M(log log n+O(log log log n)) with probability (1− 3

(log logn)4 ). This follows since

by the definition of M , the probability that any of the last O(n log n) exceeds
size M is O( 1

(log logn)5 ), and conditioning on this event the proof goes through

unchanged except for the fact that we go up in increments of M .
Indeed, when we use the lemma with L = O(log n), the base of the induction

as before gives us for ` = O(log log n), the fraction of bins with load at least
` is at most 1

L3 . By the argument in Lemma 3, no more than βiL+1n balls
will fall in bins that already have at least this load. Since we condition on the
O(n log n) white balls being of size at most M , the number of bins of load `+M
is at most βiL+1n. Continuing in this fashion, with step size M in each step of
the induction, we get that there are at most O(log n) bins of load larger than
O(log log n)+M log2 log n. Finally, as before, we can complete the argument with
an additional overhead of O(M) as each of these bins is unlikely to get more than



a constant number of balls. Finally, a second application of the Lemma gives us
the claimed bound.

We next instantiate this bound for some specific distributions. As remarked
above, for an exponential or a geometric distribution, the gap is Θ(log n) and this
induction approach will not help us prove a better bound. Consider a half-normal
weight distribution with mean 1 (i.e. W is the absolute value of an N(0, π2 )
random variable. Then M =

√
πerf−1(1 − 1

n logn(log logn)5 ) = Θ(
√

log n). This

gives a bound of O(
√

log n log log n) instead of O(log n) that we get from [8]. On
the other hand, as we show in the next section, a lower bound of Ω(

√
log n) is

easily proved.
Similarly, if the weight distribution is uniform in [a, b], normalizing the ex-

pectation to 1 makes b = 2 − a ≤ 2. An upper bound of b log log n ≤ 2 log log n
follows immediately.

We note that Lemma 4 does not hold when balls are weighted (c.f [10],[3]).
As a result this proof leaves a “hole” between n and n log n. It proves the bound
on the gap when O(n) or Ω(n log n) balls are thrown but does not cover for
example Θ(n

√
log n) balls.

Lower Bounds If weights are drawn uniformly from {1, 2} one might hope the
maximum load to be 3/2 log log n + O(1). It is true that n/2 balls of weight 2
already cause a gap of 2 log log n but one hopes that the balls of weight 1 would
reduce this gap. Our first lower bound shows that this intuition is not correct
and that the maximum load is indeed 2 log log−O(1).

Theorem 4. Suppose that the weight distribution W satisfies Pr[W ≥ s] ≥ ε
for some s ≥ 1, ε > 0 and E[W ] = 1. For large enough n, for every m ≥ n/ε, the
gap of Greedy[d] is at least s(log log n/ log d)−O(s) with constant probability.

A similar lower bound is proven in [1] for the case m = n and uniform weights.
The proof in [1] uses a layered induction approach as is also outlined in the
survey [5]. We note that in the uniform case, majorization (similar to Lemma 4)
would extend the lower bound to any m > n. The same could not be said in the
weighted case. For the m = n case the weighted case is almost as simple as a
variable change in the proof of [1]. Majorization however does not hold, so the
extension of the lower bound to all m ≥ n is done, similarly to the upper bound,
by using Theorem 3 to provide a base case for the inductive argument.

Proof. It is convenient to think of time m as time 0 and count both load and
time with respect to the m’th ball, so when we say a bin has load i in time t it
actually means it has load w(m)/n + i at time m + t, where w(m) is the total
weight of the first m balls. The bound will be proven for time m+ n/ε which is
time n/ε in our notation. Intuitively, in this amount of time we will see about n
balls of weight at least s which would cause the maximum load to increase by
s(log log n − O(1)). The average however would increase only by O( 1

ε ) = O(s),
hence the gap would be at least s log log n−O(s).

We follow the notation set in [5], with appropriate changes. The variable
νj(t) indicates the number of bins with load in [(j − 1)s,∞) at time t. We will



set a series of numbers γi and times ti (to be specified later) and an event

Fi := {νi(ti) ≥ γi}.

For the base case of the induction we set γ0 = n/ log2 n and t0 = 0. We observe
that Theorem 3 implies that for large enough n, Pr[ν0(0) ≥ γ0] ≥ 1−1/n2, so F0

occurs with high probability. Indeed Theorem 3 implies that for the normalized
load vector, |Xt|∞ ≤ c log n for an absolute constant c. If half the Xt

i ’s are at
least −s, we are already done. If not then then

∑
i:Xt

i<−s
|Xt

i | is at least ns
2 .

Thus the sum
∑
i:Xt

i≥0
|Xt

i | =
∑
i:Xt

i<0 |Xt
i | ≥ ns

2 . The bound on |Xt|∞ then

implies that at least ns/c log n Xt
i ’s are non-negative. Since s ≥ 1, the base case

is proved.
Our goal is to show that Pr[Fi+1|Fi] is large. To this end, we define ti =

(1 − 2−i)nε and the range Ri :=
[
(1− 2−i)nε , (1− 2−(i+1))nε

]
. Finally fix an

i > 0 and for t ∈ Ri define the binary random variable

Zt = 1 iff ball t pushes load of a bin above is or ν(i+1)(t− 1) ≥ γi+1.

As long as ν(i+1)(t− 1) < γi+1 it holds that for Zt = 1 it suffices that a ball
of weight at least s is placed in a bin of load h ∈ [s(i − 1), si). Conditioned on
Fi, the probability of that is at least

ε
(

(
γi
n

)d − (
γi+1

n
)d
)
≥ εγdi

2nd

since we will set γi+1 ≤ γi/2. Denote pi :=
εγd

i

2nd and by B(n, p) a variable
distributed according to the Binomial distribution. We have:

Pr

[∑
i∈Ri

Zi ≤ k | Fi

]
≤ Pr

[
B
( n

ε2i+1
, pi

)
≤ k

]
.

We continue exactly as in [5] by choosing

γi+1 =
γdi

2i+3nd−1
.

Now Chernoff bounds imply that as long as npi
ε2i+1 ≥ 17 log n it holds that

Pr
[
B
( n

ε2i+1
, pi

)
≤ γi+1

]
= o(1/n2).

The tail inequality holds as long as i ≤ log log n/ log d − O(1), at which point
the load had increased by s(log log n/ log d)−O(s). The average increased by at
most 4/ε ≤ 4s with probability 3/4, and the theorem follows. ut

We note that the uniform distribution on {1, 2} (when normalized by a factor
of 2

3 ) satisfies the conditions of this Theorem with s = 2, ε = 1
2 . Thus the gap is

2 log log n−O(1).
Another, rather trivial lower bound applies to distributions with non-trivial

tails.



Theorem 5. Let W be a weight distribution with EW∼W [W ] = 1. Let M be
such that PrW∼W [W ≥ M ] ≥ 1

n . Then for any allocation scheme, the gap is at
least M −O(1) with constant probability.

Proof. After throwing n balls, the probability that we do not see a ball of weight
M or more is at most (1 − 1

n )n ≤ 1
2 . Moreover, by Markov’s, the average is at

most 4 except with probability 1
4 . Thus with probability at least 1

4 , the maximum
is at least M and the average is at most 4. ut

We note that this implies an Ω(log n) lower bound for an exponential distri-
bution, and an Ω(

√
log n) lower bound for the half normal distribution.

3.2 The Left[d] Scheme

Next we sketch how this approach also proves a tight bound for Vöcking’s Left[d]
process [11]. The result had been shown in [2], though there they had to redo
large sections of the proof, while here we only require minor changes. Recall that
in Left[d], the bins are partitioned into d sets of n/d bins each (we assume n is
divisible by d). When placing a ball, one bin is sampled uniformly from each set
and the ball is placed in the least loaded of the d bins. The surprising feature of
this process is that ties are broken according to a fixed ordering of the sets (we
think of the sets as ordered from left to right and ties are broken “to the left”,
hence the name of the scheme). The surprising result is that the gap now drops

from log logn
log d to log logn

d lnφd
where φd = limk→∞(Fd(k))

1
k ∈ [1.61, 2) is the base of

the order d Fibonacci number.
The key ingredient in the proof is Theorem 3 from [8]. The exponential po-

tential function is Schur-Convex and therefore the theorem holds for any process
which is majorized by the Greedy[d] process. It is indeed the case that Vöcking’s
Left[d] process [11] is majorized by Greedy[d] (see the proof in [2]). All that
remains is to prove the analog of Lemma 2. For this we follow the analysis of
Mitzenmacher and Vöcking in [6]. Let Xjd+k be the number of bins of load at
least j from the k’th set, and set xi = Xi/n. It is easy to verify the recursive
equation

E[xi|x<i] ≤ dd
i−1∏
j=i−d

xj

From here the proof is similar to that of Lemma 2 and is left as an exercise to
the reader.

4 Discussion

The main strength of our approach is that via Theorem 3 it effectively reduces
the heavy loaded case to the simpler m = n case. Thus known results for this
case, whether it is a weighted upper and lower bounds or the Left[d] scheme
follow in a rather similar way. A drawback of our proof technique is that it



does not obtain the same tail inequality on deviation from expectation as [2]
does. The theorem in [2] states that for every c there is a γ = γ(c) so that
Pr[G > log log n+ γ] ≤ n−c. The reason is that we do not ahve a small enough
tail bound for the base case of the layered induction, i.e. on Pr[ν` ≤ β`]. This
is because the potential function used to prove Theorem 3 is not concentrated
enough.

An interesting corollary from Theorem 3 is that the Markov chain Xt has a
stationary distribution and that the bounds we prove hold also for the stationary
distribution itself. In that sense, while in [2] the mixing of the chain was used to
show that the interesting events happen at the beginning of the walk (and thus
an induction on the first poly(n) suffices), in our technique we look directly at the
distant ”future” and argue on the stationary distribution itself. When balls are
unweighted a majorization based argument shows that moving closer in time can
only improve the bounds on the gap (this is Lemma 4). Unfortunately, a similar
Lemma does not hold when balls are weighted (see [3]), so we need to specify
the time periods we look at. Indeed, while our results hold when considering a
large number of balls, we curiously have a ’hole’ for a number of balls that is
smaller than n log n.
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