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Abstract

Document sketching using Jaccard similarity has been a workable effective technique in reducing near-
duplicates in Web page and image search results, and has also proven useful in file system synchronization,
compression and learning applications [6, 4, 5].

Min-wise sampling can be used to derive an unbiased estimator for Jaccard similarity and taking a
few hundred independent consistent samples leads to compact sketches which provide good estimates
of pairwise-similarity. Early sketching papers handled weighted similarity, for integer weights, by trans-
forming an element of weight w into w elements of unit weight, each requiring their own hash function
evaluation in the consistent sampling. Subsequent work [12, 19, 14] removed the integer weight restric-
tion, and showed how to produce samples using a constant number of hash evaluations for any element,
independent of its weight. Another drastic speedup for sketch computations was given by Li, Owen and
Zhang [17] who showed how to compute such (near-)independent samples in one shot, requiring only a
constant number of hash function evaluations per element. Unfortunately this latter improvement works
only for the unweighted case.

In this paper we give a simple, fast and accurate procedure which reduces weighted sets to unweighted
sets with small impact on the Jaccard similarity. This leads to compact sketches consisting of many
(near-)independent weighted samples which can be computed with just a small constant number of hash
function evaluations per weighted element. The size of the produced unweighted set is furthermore a
tunable parameter which enables us to run the unweighted scheme from [17] in the regime where it is
most efficient. Even when the sets involved are unweighted, our approach gives a simple solution to the
densification problem that [20, 21] attempt to address.

Unlike previously known schemes, ours does not result in an unbiased estimator. However, we prove
that the bias introduced by our reduction is negligible and that the standard deviation is comparable to
the unweighted case. We also empirically evaluate our scheme and show that it gives significant gains in
computational efficiency, without any measurable loss in accuracy.

1 Introduction

Web experiments have repeatedly shown that most breadth-first collections of pages contain many unique
pages, but also contain large clusters of near-duplicate pages. Typical studies have found that duplicate and
near-duplicate pages account for between a third and a half of a corpus.

Min-wise sampling [4, 6, 5] has been widely used in Web and image search since the mid-nineties to
produce consistent compact sketches which provide good estimates of pairwise similarity of corpus items,
computing the sketch with reference only to a single item. Min-wise hashing computes a sketch for estimating
the Jaccard (scaled L1) similarity effectively; SimHash [8], and related techniques compute sketches for
estimating the angular separation (in L2) of arbitrary vectors. Both of these have been widely used in
deployed commercial search engines to allow the search result pages to suppress reporting the near-duplicate
pages which would otherwise often dominate the search results.

∗This research was performed while all the authors were at Microsoft Research Silicon Valley.
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SimHash, by its nature, allows vector coordinates to be arbitrary real numbers, and weights the random
projections accordingly. While min-wise sampling is designed for unweighted sets it can also be used for non-
negative integer weights. For this one simply replaces any element e of weight w by w elements e1, . . . , ew
of unit weight. This reduction however leads to the running time of computing one consistent sample
to be proportional to the sum of all weights. More recent papers [12, 19, 14] removed the integer weight
restriction, and showed how to produce samples using a constant number of hash evaluations for any element,
independent of its weight.

All these sampling techniques as described typically result in a Boolean random variable whose expec-
tation is related to the similarity. One typically applies the same procedure repeatedly with independent
randomness to produce a sketch consisting of hundreds to samples, to get independent Boolean estimates
that can be averaged. In this work, we will be concerned with designing a faster estimation scheme for
Jaccard similarity.

A beautiful idea of Li and König [15, 16], known as b-bit min-wise hashing, helps reduce the size of a
sketch by storing only a b-bit hash per sample. While this results in some “accidental” hash collisions, this
can be remedied by taking into account the effect of these collisions and taking a larger number of samples.
This gives more compact sketches but may require a longer time for sketch generation.

For the unweighted case Li, Owen and Zhang [17] showed how to drastically speed up the computation of
sketches by computing 200, say, (near-)independent samples in one shot using only a constant number of hash
function evaluations per element, instead of computing each sample one-by-one. Unfortunately however, this
“one permutation”-technique does not easily extend to weighted sampling.

In this paper, we bring this level of performance to weighted sampling, producing an algorithm which
produces a sketch in time proportional to the number of positive-weight elements in the item. We do this by
picking two or more scales and converting the weighted set into an unweighted one by randomized rounding.
This sampling step introduces a negligible error and bias and leads to a small unweighted set on which any
unweighted sketching technique can be applied. The size of this set is a tunable parameter which can be
beneficial for the subsequently used unweighted sketching step. We apply this new algorithm, and the older
ones, in a variety of settings to compare the variance in accuracy of approximation. These improvements
come at a marginal cost. Our algorithm takes as input an interestingness threshold α, say α = 1

2 , such
that similarities smaller than α are considered uninteresting. Given two weighted sets, it either returns an
accurate estimate of the similarity, or correctly declares that the similarity is below α. Since in applications,
one is not usually interested in estimating similarity when it is small, we believe that this is an acceptable
tradeoff.

2 Background

Given two finite sets S and T from a universe U , the Jaccard similarity of S and T is defined as:

jacc(S, T ) =
|S ∩ T |
|S ∪ T |

.

A weighted set associates a positive real weight to each element in it. Thus a weighted set is defined by
a map w : U → <+, with the weight of the elements outside the set defined as 0. We denote the support of
w by supp(w) = {a ∈ U : w(a) > 0}. An unweighted set is then the special case where the weight is equal
to one on all of its support.

This definition of Jaccard similarity can be extended to weighted sets in a natural way. Given two
mappings wS and wT with supports S and T respectively, their weighted Jaccard similarity jacc(W,V ) is
defined as ∑

a∈S∩T min(wS(a), wT (a))∑
a∈S∪T max(wS(a), wT (a))

=
|min(wS , wT )|1
|max(wS , wT )|1

.

Given a weighted set w, we denote by n(w) the support size |supp(w)|, and by W (w) the total weight
|w|1. When the weighted set if clear from context, we will simply use n and W to denote these quantities.
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We will be concerning ourselves with fast algorithms for creating a short sketch of a weighted set from which
we can quickly estimate the Jaccard similarity between two sets.

Empirical observations place Jaccard similarity below ≈ 0.7 as probably not near-duplicates, and above
≈ 0.95 as likely near- or exact-duplicates. We will be concerned with fast and accurate sketching techniques
for Jaccard similarity.

Sampling techniques which pick without replacement can closely approximate Jaccard: the oldest such,
working in a limited setting where weights are integers (or integer multiples of some fixed base constant)
replaces item a with weight w(a) by new items (a, 1), . . . , (a,w(a)), all of weight 1. By taking a hash function
h, and computing it multiple times for each input item, we can map each pair of item, sample number to a
positive real number. To select the jth sample, consider h(x, j) for all items x, and choose the pair producing
the numerically smallest hash value. This leads to the generation of k samples in time O(Wk).

Manasse, McSherry and Talwar [19] extended this classic scheme to the case of arbitrary non-negative
weights, using the “active index” idea of Gollapudi and Panigrahy [12]. Their scheme had the additional
advantage that only expected constant time per element is required, independent of its weight, which leads
to a total expected run-time of O(nk) for generating k samples, independent of W . Ioffe [14] improved this
to worst-case constant time, by carefully analyzing the resulting distributions, reducing the per input per
sample cost to choosing five random uniform values in the range between zero and one. This gives a worst
case run-time of O(nk).

In a deployed implementation, the principal costs for this per element are: (a) Seeding the pseudo-random
generator with the input, (b) computing roughly 200 sets of 5 random values in [0, 1], and manipulating them
to compute a 200 hash values, and (c) comparing these hash values to a vector of the 200 smallest values
discovered to date, and replacing that value if smaller.

Li, Owen and Zhang [17], using a technique first explored by Flajolet and Martin [11] compute a single
hash value for each element, as well as a random sample number; the hash value then contends for smallest
only among those values with equal sample number. This approach does not seem to extend to weighted
sampling, because an item with very large weight may need to contend for multiple samples in order to
sufficiently influence the predicted similarity. Another deficiency of this approach is that when sets are
small, the accuracy of the estimator suffers. Recent works by Shrivastava and Li [20, 21] attempt to address
the later concern.

More recently Li and König [15, 16] found it effective to instead store up to 256 smallest values, but store
only 1 or 2 bits derived randomly from the smallest values. Accidental collisions will happen a quarter or a
half the time, but we can get equivalent power for estimating the Jaccard value by computing enough extra
samples to account for the matches that occur due to insufficient length of the recorded value. For 2 bit
samples, with 136 samples, we expect 34 to match randomly, leaving us with 102 samples that match with
probability equal to the Jaccard value; näıve Chernoff bounds allow us to conclude that estimates of the
true value will be accurate to within 0.1. For 1 bit samples, drawing 200 results in 100 accurate samples;
the storage space required without these modifications is on the order of 800 bytes. The 2 bit variant takes
34 bytes to hold (with 800 bytes needed in memory prior to the 2 bit reduction, since the minimization step
needs to done accurately), while the 1 bit variant needs 25 bytes; a further variant instead computes 400
results, reduces each to 1 bit, and then computes the exclusive-or of pairs of bits to reduce back to 200 bits,
each of which will match randomly half the time; this gives us an estimator for p2, rather than p, which we
can then take the square root of.

In our new algorithm, we seek to gain for the weighted case the space efficiency of [15], while producing
a sample set as efficiently as [17] do for the unweighted case.

Other Related Work

The Jaccard similarity is an `1 version of similarity between two objects. The cosine similarity is an `2 notion
that has also been used, and SimHash gives a simple sketching scheme for it. Henzinger [13] performed an
in-depth comparison of the then state-of-the-art algorithms for MinHash and SimHash. More recently,
Shrivastava and Li [22] compare these two approaches in some other applications. While as stated, SimHash
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requires time O(nk) to generate k samples, recent work on fast Johnson-Lindenstrauss lemma [1, 2, 9] may
be viewed as giving faster algorithms for SimHash.

3 Algorithm rationale and design

A sketching based similarity estimation scheme consists of two subroutines:

• A sketching algorithm Sketch that takes as input a single (possibly) weighted set (and usually, a
common random seed) and returns a sketch, and

• an estimating algorithm Estimate that takes as input two sketches generated by the sketching and
returns an estimate of the Jaccard similarity.

The property one wants from this pair of algorithms is that for any pair of weighted sets w1 and w2,
the estimate Estimate(Sketch(w1, r), Sketch(w2, r)) is “close” to the true Jaccard similarity, with high
probability over the randomness r. Moreover, we want the run-time and the output size of the Sketch
algorithm to be small.

We will present our algorithm in two parts. We first describe a reduction that given a weighted set w
and a random seed r outputs an unweighted set ReduceToUnwtd(w, r) such that:

(a) the expected size of the unweighted set is |w|1, and

(b) given any two weighted sets w1 and w2, the resulting unweighted sets S1 = ReduceToUnwtd(w1, r)
and S2 = ReduceToUnwtd(w2, r) satisfy the property that jacc(S1, S2) is approximately jacc(w1, w2)
with high probability, as long as |w1|1 and |w2|1 are large enough.

We will formalize these statements in the next section. We will then describe how such a reduction can be
used along with an unweighted similarity estimation scheme to generate fast and small sketches for weighted
sets. In this second part, we will assume that we are given a threshold α such that similarities smaller than
α need not be estimated accurately.

3.1 Weighted to Unweighted Reduction

In this section, we describe a simple randomized reduction that transforms any weighted set to an unweighted
one, such that the Jaccard similarity between sets is approximately preserved. Given a weighted set w from
a universe U , the reduction produces an unweighted set S ⊆ U×N. We will assume access to a hash function
h that takes a random seed r and a pair (a, i) ∈ U × N, and returns a real number in [0, 1). We assume for
the proofs, that for a random r, the hash value h(r, a, i) is uniform in [0, 1) and independent of h(r, a′, i′) for
any (a′, i′) different from (a, i). In practice, we will only need a small expected number of bits of this h, and
using a pseudorandom generator will suffice.

The reduction is a simple randomized rounding scheme. Consider an element a with weight w(a). We
write w(a) = ja + fa, where ja = bw(a)c is the integer part of w(a) and fa ∈ [0, 1) is the fractional part. We
add to S an element (a, i) for i = 1, . . . ja. Additionally, we add (a, j(a) + 1) with probability exactly fa;
we do this by computing a hash h(r, a, ja) and adding (a, ja + 1) to S if and only if h(r, a, ja) < fa. Using
the same hash function seeded with the element a ensures consistency in our rounding, which is crucial for
(approximately) preserving Jaccard similarity. The resulting ReduceToUnwtd algorithm looks as follows:

This ReduceToUnwtd algorithm furthermore provides the following guarantees, whose proof we defer to
the next section.

Theorem 3.1 Let w1 and w2 be weighted sets and let S1 = ReduceToUnwtd(w1, r) and S2 = ReduceToUnwtd(w2, r)
for a random seed r. Then for each i = 1, 2 and any δ > 0,

1. (Size Expectation) E[|Si|] = |wi|1.
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Algorithm 3.1 ReduceToUnwtd(w,r)

1: S = ∅
2: for a with w(a) > 0 do
3: ja = bw(a)c
4: if h(r, a, ja) < w(a)− ja then
5: ja = ja + 1

6: S = S ∪
⋃ja
p=1{(a, p)}

7: Output S

2. (Size Tail) Pr[
∣∣|Si| − |wi|1∣∣ ≥ 3

√
|wi|1 ln 2

δ ] ≤ δ.

Further let W = max(|w1|1, |w2|1). Then

3. (Bias)
∣∣E[jacc(S1, S2)]− jacc(w1, w2)

∣∣ ≤ 1
W−1 .

4. (Tail) Pr[|jacc(S1, S2)− jacc(w1, w2)| ≥
√

27 ln 4
δ

W ] ≤ δ.

A variant of this algorithm will be useful when we want to even further improve on the number of hash
computations that need to be performed. In particular, we propose the algorithm ReduceToUnwtdDep which
uses h(r, a) instead h(r, a, ja) to determine whether (a, ja+ 1) is added. Except for this small change in Step
4 the algorithm is identical to ReduceToUnwtd.

Algorithm 3.2 ReduceToUnwtdDep(w,r)

1: S = ∅
2: for a with w(a) > 0 do
3: ja = bw(a)c
4: if h(r, a) < w(a)− ja then
5: ja = ja + 1

6: S = S ∪
⋃ja
p=1{(a, p)}

7: Output S

This slight change in ReduceToUnwtdDep compared to ReduceToUnwtd introduces some dependencies in
the rounding. For example, if wa = 1.5 and w′a = 2.5, then the outputs of ReduceToUnwtdDep on these two
weight functions S and S′ will have the events (a, 2) ∈ S perfectly correlated with the event (a, 3) ∈ S′,
whereas in the original ReduceToUnwtd algorithm these events are independent. Nevertheless, the following
theorem, which is also proved in the next section, shows that the Jaccard similarity of S and S′ is still close
to that between w and w′.

Theorem 3.2 Let w1 and w2 be weighted sets and let S1 = ReduceToUnwtd(w1, r) and S2 = ReduceToUnwtd(w2, r)
for a random seed r. Then for each i = 1, 2 and any δ > 0,

1. (Size Expectation) E[|Si|] = |wi|1.

2. (Size Tail) Pr[
∣∣|Si| − |wi|1∣∣ ≥ 3

√
|wi|1 ln 2

δ ] ≤ δ.

Further let W = max(|w1|1, |w2|1). Then

3. (Bias)
∣∣E[jacc(S1, S2)]− jacc(w1, w2)

∣∣ ≤ 1
W−1 .

4. (Tail) Pr[|jacc(S1, S2)− jacc(w1, w2)| ≥
√

27 ln 4
δ

W ] ≤ δ.
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3.2 Similarity Estimation Scheme

We start by observing that the weighted Jaccard similarity is scale invariant: for any real number γ > 0 it
holds that jacc(γw1, γw2) = jacc(w1, w2). For our scheme however different choices of γ lead to a different
outcome. In particular, our reduction gets more accurate as the total `1 weight w(U) increases. On the other
hand, the expected size of the unweighted set resulting from the reduction is w(U) so that any unweighted
similarity estimation sketch we use gets more inefficient as w(U) increases. We therefore would like to pick
γ to be as small as possible while keeping the accuracy loss in the reduction small.

A more pressing matter though is the following: if we know the sets w1 and w2, we can carefully pick
γ, but the whole point of the sketch is that it summarizes w1 without knowing which w2 we would want to
compare it with. Thus, we will need to decide on one or more scaling factors γ for a set w without knowing
which other weighted sets we will compare it with.

To describe our scheme, we will introduce a few more parameters. The input parameter α < 1 is the
interestingness threshold, and our scheme may report ”< α” instead of outputting an estimate if the Jaccard
similarity is smaller than α. The parameter k will correspond to the final number of comparable samples (or
b-bit hash values) for a pair of weighted sets of interest. This determines the accuracy of the scheme, which is
of the order 1√

k
, the standard deviation of k independent random measurements. Thus to get accuracy about

0.05 in the estimate of the Jaccard similarity, we will use k to be about 400. An additional parameter L is
the redundancy we want to use when using an unweighted similarity estimation scheme. Roughly speaking,
for generating k samples, we will assume that the unweighted similarity scheme we use works well on sets
of size at least Lk. For a scheme such as the one we use [15], L being a small constant such as 5 suffices.
Finally, a parameter β will determine the scaling factors we use, and t will denote the number of scales we
use for each weighted set. For simplicity, we first describe the algorithm with β = α.

We propose to pick for a weighted set w, a small number t of “scales”, where a scale is simply an integer
power of β. We pick the scales in such a way that the scaled `1 weight βi ·w(U) is in the range [ Lkt−1 , β

−1 Lk
t−1 )

for the first scale, and in adjacent larger geometric intervals for the remaining t − 1 scaling factors. This
can be achieved by taking the first scaling factor to be β−s for s given by s = dlog1/β

Lk
(t−1)w(U)e, and the

subsequent scaling factors being given by s + 1, s + 2, . . . , s + t − 1. For each of these scales s′, we define
the scaled weighted sets β−s

′ · w, and apply the reduction to it to derive an unweighted set of size at least
Lk/(t− 1), and apply an unweighted sketching scheme to derive k

t−1 samples.
Observe that if w1(U)/w2(U) 6∈ [α, 1/α], then the Jaccard similarity jacc(w1, w2) < α. Thus for such

sets, we can safely report “similarity < α”. If on the other hand, the ratio w1(U)/w2(U) ∈ [α, 1/α], then the
first scaling factors s1 and s2 chosen for w1 and w2 are either equal or differ by 1. In either case, they share
at leat t− 1 scaling factors, and we can use those for estimation of the distance. This gives us k comparable
samples, as desired.

More generally, we can pick an integer τ ∈ [1, t], and set1 β = α1/τ , We then use k
t−τ samples for each

scales, and pick our scales starting from s = dlog1/β
Lk

(t−τ)w(U)e. It is easy to verify that this choice ensures

that for any pair of sets with w1(U)/w2(U) ∈ [α, 1/α], we are guaranteed to find t comparable samples.
We formalize the sketching and the estimating algorithms next. We assume access to a subroutines

UnwtdSketch(S, k, r) that takes in an unweighted set S, parameter k and a seed r and returns a sketch
consisting of k samples. In addition, we assume that UnwtdEstimate(sketch, sketch′) outputs an estimate of
the Jaccard distance based on the sketches. The b-bit hashing scheme of [15] would give a candidate pair of
instantiations of these subroutines. In the description below, we assume that the randomness source r can
be partitioned into sources ri, r

′
i, for t different values of i.

We note that as stated, the number of hash computations required in the reduction steps is tn. However,
using the dependent version ReduceToUnwtdDep of the reduction, this can be reduced to n, which may be
a substantial saving when n is large.

While our algorithm can be used with any unweighted similarity estimation scheme, using it with the one
permutation hashing scheme of [17] will give us unweighted sets of expected size at most β−1 Lk

t−τ , . . . , β
−t Lk

t−τ .

1In principle, β can be chosen arbitrarily in [α1/τ , α1/τ+1), and a value more conducive to floating point operations may be
picked.
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Algorithm 3.3 ComputeSketch(w, k, α, τ, L, t, r)

1: β = α
1
τ

2: s = dlog1/β
Lk

(t−τ)|w|1 e
3: sketch = ∅

4: for i = s to s+ t− 1 do
5: wi = β−iw . Scale
6: Si = ReduceToUnwtd(wi, ri) . Round
7: ski = UnwtdSketch(Si,

k
t−τ , r

′
i) . Sketch

8: Add (i, ski) to sketch

9: Output sketch

Algorithm 3.4 EstimateJaccard(sketch, sketch′)

1: Common = {(i, ski, sk′i) : (i, ski) ∈ sketch and (i, sk′i) ∈ sketch′}
2: if Common == ∅ then
3: Output ”Similarity < α”
4: else
5: for each (i, ski, sk

′
i) ∈ Common do

6: simi = UnwtdSimilarity(ski, sk
′
i)

7: Output Average(simi)

The number of hash evaluations in the unweighted sketching scheme is equal to the set size, so that for the
typical setting of β = α = 0.5, t = 3, the total cost is 7Lk hash evaluations. The running time is of a similar
order. Here L is a small constant such as 4. Recall that the best previously known weighted scheme required
5nk hash evaluations, which we are reducing to n+ 7Lk.

3.3 Discussion

In this section, we discuss some finer implementation details, and how they may affect our choices of param-
eters.

The benefits of tunable unweighted size

One immediate benefit of the set size being tunable is that we can arrange the parameters so as to ensure
that at each of the scales that a set is involved in, the size of the unweighted set resulting from the reduction
is at least Lk

t−τ . As discussed earlier, this has the benefit of making empty samples rare enough that they can
be ignored. This does not just simplify the sketch comparison but more importantly relieves us from having
to store whether or not a sample is empty, leading to noticeable savings in the sketch size.

We remark that even for unweighted sets, the one permutation approach of [17] suffers when sets are
small. With many bins being empty the accuracy of the scheme drops drastically. Subsequent works [20, 21]
have proposed modifications to address this issue. Nevertheless, the authors still pay for sparseness: the
variance initially falls off as 1

k as k increases, but flattens out once k becomes much larger than the set size.
We note that treating an unweighted set as a weighted one, and applying our approach gives a simple solution
to this problem, and results in a 1/k fall in variance for arbitrarily large k, irrespective of the support size,
without paying any penalty in the running time. Thus, even for unweighted sets, the approach proposed in
this work is useful.

A more subtle benefit comes from the fact that the size of the unweighted set is at most β−t Lkt−τ , so that

an average sample gets at most Lβ−t items. For typical values, L = 5, t = 3, β = 0.5, this is 40. Thus when
computing the hash value to compute the minimum in the bin, we can do with, say a 13 bit hash value. Using
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these many bits makes it exceedingly unlikely that one of the bins will not have a unambiguous minimum.
Thus when generating hash values for (a, 1) . . . , (a, j) for some a, we can use log2

k
t−τ bits to generate the

bin, 13 bits to figure out the minimum, and an additional b bits to be stored for the winner in the bin. Thus
we need 7 + 13 + 2 = 22 bits per (a, i). Thus we can generate a sequence of pseudorandom bits seeded with
a, and then break it up into chunks of 22 bits each, using the ith chunk for (a, i). In the rare event that we
do not get a unique minimum in some bin, we can reseed with (a, 1) and generate several additional bits per
i sequentially, and so on. Since this is a rare enough event it does not impose a significant cost. Note that in
contrast, without such an upper bound on the required number of bits, the bucketing of any large document
would lead to a large number of elements landing in the same bin which would require a larger number of
bits to identify the minimum. One thus has to either reseed for each (a, i) or make other assumptions on
the document size.

The effect of the threshold for interestingness

The threshold α which determines what values of Jaccard similarity we consider interesting would typically
depend on applications. While we presented this work with α = 0.5, lower or higher similarity values may
be preferable in other settings. When α is close to 1 (say 0.95), then other optimizations may be possible.
Indeed, note that for sets that are so similar, the sketches, even for a large values of b would agree in nearly
all the locations. Intuitively, each stored values gives us little information as there is at most say 5 out of 100
b-bit values that are different. One could ameliorate this by compressing the sketch in a careful manner. For
example, one can take 10 b-bit values and just store their XOR, thus saving a factor of 10. In return, we can
now generate a 1000 b-bit values instead of 100, but store only the 100 resulting XORs. For similarity more
than 0.95, at least half of the 10-bin-blocks would be identical, and thus their XOR would be the same. Since
we can account for accidental collision of the b-bit values, we can account for them. A careful look at this
process shows that we would get an estimate of Sim10 ≈ (1− 10(1− Sim)) for Sim close to 1, from which
a more accurate estimate of the similarity can be obtained. This idea is not new and has been suggested in
Li and König [15], who show that taking b to be 1 is already better when similarity is at least 0.5, and show
that xoring pairs (the b = 1

2 ) case) gives a further improvement for larger similarities. It is natural to pick
the appropriate value of b < 1 when α is close to 1.

Using more scales than 3

Recall that with the proposed choice of 3 scales, we get two common scales for sets whose weights are within
a factor of α of each other. But even for sets whose weights are within a factor of α2, we have one common
scale and thus get a similarity estimate with error commensurate with k/2 samples instead of k. By choosing
more scales, we get a better trade-off between space and accuracy for every similarity value: we store at
many scales, but have fewer samples for each scale. As t increases, a larger fraction of our samples (1− 1

t )
are shared between two sets within weight α. And we get a smoother fall-off in accuracy for smaller values of
similarity: e.g., even sets with weights within a factor of α2 have t− 2 scales in common, and thus a (1− 2

t )
of our samples can be used for estimating similarity. By setting τ to be larger, say τ = 3, and larger t (say
10), we get as much accuracy as the τ = 1, t = 3 case for similarities around 0.5, but a smoother decay in
accuracy for smaller similarities, and in fact a higher accuracy for higher similarities. The only way that we
may have to “pay” for this is that as the size of the unweighted sets now becomes smaller the error in the
reduction step may increase. In our experiments, even for unweighted sets of size 50, the error introduced
was only a few percent, and moreover the errors over different scales seemed to largely cancel each other out.

Finally, we note that while the variance of the similarity estimate from different scales varies slightly. For
the larger scales, the scaled weight is larger, so that the reduction has smaller variance. While at most a
factor of 1

L of the variance from the unweighted sketch, this small difference in variance of the estimators from
each scales can be taken into account while averaging the estimates from different scales. This would give
a small improvement in the variance of the final estimate, at the cost of a slightly more complex estimation
algorithm.
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4 Proofs

In this section, we prove Theorems 3.1 and 3.2.

4.1 A Useful Lemma

We start by stating and proving a useful inequality that relates the expectation of the inverse of a sum of
independent 0-1 variables to the inverse of a closely related expectation. This is a special case of a result of
[7] and we present a simple proof here for completeness.

Lemma 4.1 Let {Xi}Ni=1 be a sequence of independent Bernoulli random variables with E[Xi] = µi and let

µ
def
=
∑
i µi. Then for A ≥ 1,

1

A+ µ
≤ E

[
(A+

N∑
i=1

Xi)
−1

]
≤ 1

A+ µ− 1
.

Proof: The first inequality follows by applying Jensen’s inequality to the function φ(X) = 1/(A + X),
which is convex for X ≥ 0.

To prove the second inequality, we use a result from [7] who gave a formula for negative moments of
random variables. We reproduce the proof of the case we use for completeness. Observe that for every
t, x > 0,

tx

x
=

∫ t

0

ux−1du.

Setting t = 1 and taking expectations over random x, we get

E
[ 1

X

]
=

∫ 1

0

E
[
uX−1

]
du.

For X = A+
∑
iXi, we upper bound

E
[
uX+A−1] = uA−1

∏
i

E
[
uXi

]
= exp((A− 1) lnu)

∏
i

(1− (1− u)µi)

≤ exp((A− 1)(u− 1))
∏
i

exp(−(1− u)µi)

= exp(−(1− u)(µ+A− 1)).

We conclude that

E
[ 1

X

]
≤ exp(−(µ+A− 1))

∫ 1

0

exp((µ+A− 1)u)du

=
1− exp(−(µ+A− 1))

µ+A− 1
<

1

µ+A− 1
.

4.2 Proof of Theorem 3.1

We set up some notation first. Given weighted sets w1 and w2 , we define wmin : U → < as

wmin(a) = min(w1(a), w2(a))
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and similarly define wmax : U → < as

wmax(a) = max(w1(a), w2(a)).

Recall that Si = ReduceToUnwtd(wi, r), and let Smin and Smax denote the outcomesReduceToUnwtd(wmin, r)
and ReduceToUnwtd(wmax, r) respectively.

Our threshold-based rounding has the property that there is no loss of generality in assuming that
w1 = wmin and w2 = wmax. This is because the Jaccard similarity jacc(w1, w2) equals the similarity
jacc(wmin, wmax), and moreover for any value of r we have that (a, j) ∈ S1 ∩ S2 if and only if (a, j) ∈ Smin,
and similarly (a, j) ∈ S1 ∪ S2 if and only if (a, j) ∈ Smax. Therefore, jacc(S1, S2) = jacc(Smin, Smax) for
every value of r. For the rest of this proof we will therefore assume that w1 = wmin and w2 = wmax.

Let Z1 : U → {0, 1} be the indicator function for the set S1 and similarly define Z2. Note that both Z1

and Z2 are random variables. For a function f : U → <, let f(U) denote
∑
a∈U f(a).

Part (1) of Theorem 3.1 is now immediate by linearity of expectation, since for i = 1, 2 we have that

E[Si] =
∑
a∈U

∑
j∈N

E[Zi(a, j)] =
∑
a∈U

w1(a).

Part (2) of Theorem 3.1 follows by a direct application of Chernoff bounds (see e.g. [10]).
We now proceed to proving parts (3) and (4) of Theorem 3.1. Let us define wrest = w2−w1 and similarly

Zrest = Z2−Z1. Let Û = U ×N and we will denote a generic element of Û by e = (a, j). With this notation
the original weighted Jaccard similarity equals

jacc(w1, w2) = w1(U)/w2(U).

The Jaccard similarity between S1 and S2 on the other hand is

jacc(S1, S2) = jacc(Z1, Z2) = Z1(Û)/Z2(Û).

Also, note that for i = 1, 2 and for each a ∈ U , the random variables Zi(a, j) are all Bernoulli random
variables.

For e = (a, j), define Xe = Z1(e), and Ye = Z2(e) − Z1(e). These random variables then satisfy the
following properties:

• Xe and Ye are Bernoulli random variables.

• The random variables {(Xe, Ye) : e ∈ Û} are independent of each other. Thus, Xe may depend on Ye
but not on Xe′ for e 6= e′.

• For any e, at least one of Xe and Ye is zero. Thus, E[XeYe] = 0.

•
∑
e∈Û E[Xe] = w1(U).

•
∑
e∈Û E[Xe + Ye] = w2(U).

We first prove part (4). This is an easy consequence of Chernoff bounds applied to the sums of Bernoulli
random variables Xe, and to the sum of (Xe + Ye). Let X denote

∑
eXe and Y denote

∑
e Ye. Let

µx = E[X] = w1(U) and µy = E[Y ] = w2(U)− w1(U).
Without loss of generality we can assume that E[X] ≥ E[Y ] (or else can argue about Y

X+Y ). Now by
standard Chernoff bounds,

Pr[|X − µx| ≥ αµx] ≤ 2 exp(−α2µx/3)

and

Pr[|X + Y − µx − µy| ≥ α(µx + µy)]

≤ 2 exp(−α2(µx + µy)/3).
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Thus, except with probability 4 exp(−α2µx/3), we have

X/µx ∈ (1− α, 1 + α)

and
(X + Y )/(µx + µy) ∈ (1− α, 1 + α).

In this case,
X

X + Y
/

µx
µx + µy

∈ (
1− α
1 + α

,
1 + α

1− α
) ⊂ (1− 2α, 1 + 3α).

Thus, | X
X+Y −

µx
µx+µy

| ≤ 3α and setting α =
√

3 ln 4/δ
µx

implies that

Pr[| X

X + Y
− µx
µx + µy

| ≥ 3

√
3 ln 4/δ

µx
] ≤ δ,

thus proving part (4). We remark that we did not attempt to optimize the constants here.
Finally, we will prove the following result, which implies part (3).

Theorem 4.2 Let (X1, Y1), . . . , (Xm, Ym) be a sequence of independent tuples of Bernoulli random variables
such that E[Xi] = pi, E[Yi] = qi and E[XiYi] = 0 (i.e., they are never 1 together). Let µx =

∑
i pi and

µy =
∑
i qi. Let X =

∑
iXi and Y =

∑
i Yi. Then assuming2 that µx + µy > 1,

µx − 1

µx + µy − 1
≤ E[

X

X + Y
] ≤ µx

µx + µy − 1
.

Proof:
We first write

E[
X

X + Y
]

= E(X1,...,Xn)[X ·EY1,...,Yn [
1

X + Y
| X1, . . . , Xn],

When X = 0, the expression inside the outer expectation is zero. For X ≥ 1, we apply Lemma 4.1 to
conclude that

XE(Y1,...,Yn)[
1

X + Y
|X1, . . . , Xn]

≤ X

X + E[Y |X1, . . . , Xn]− 1
.

Now recall that E[Yi|Xi = 1] = 0. It follows that E[Yi|Xi] = (1−Xi)qi/(1− pi). Thus,

E[
X

X + Y
] =

= E(X1,...,Xn)[
∑
i

Xi/(
∑
i

(Xi +
(1−Xi)qi

1− pi
)− 1)]

= E(X1,...,Xn)[
∑
i

Xi/(
∑
i

γiXi +
∑
i

βi − 1)

where βi = qi
1−pi and γi = 1 − βi. This expression is easily seen to be concave in each Xi (for any fixing

of the other Xj ’s). Indeed denoting the numerator by f and the denominator by g, the partial derivative

2We use the convention that 0/0 = 1 for the left inequality, and 0/0 = 0 for the right one.
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∂f/g
∂Xi

= 1
g−

γif
g2 and ∂2f/g

∂Xi2
= − 2γi

g2 (1−γi · fg ). Since both f/g and γi are at most 1, the concavity follows. Thus,
using Jensen’s inequality, we can one-by-one replace the random variable Xi by its expectation. Rearranging
we get

E[
X

X + Y
] ≤

∑
iE[Xi]∑

i γiE[Xi] +
∑
i βi − 1

=
µx

µx + µy − 1
,

which implies the second inequality. By symmetry

E[
Y

X + Y
] ≤ µy

µx + µy − 1

Noting that X
X+Y = 1− Y

X+Y then implies the first inequality.

This implies that both E[jacc(S1, S2)] and jacc(w1, w2) = w1

w2
are sandwiched in the interval [w1−1

w2−1 ,
w1

w2−1 ].

Since this interval is of size 1
w2−1 , this implies part (3) and completes the proof of Theorem 3.1.

4.3 Proof of Theorem 3.2

In this section, we prove Theorem 3.2. We show that even if the random threshold for rounding (a, j) is
chosen as h(r, a) instead of h(r, a, j), the properties of the reduction hold. Once again, there is no loss of
generality in assuming that w1 = wmin and w2 = wmax. We note that for i = 1, 2, and for any a, the
variables Zi(a, j) are all deterministic except for Zi(a, dwi(a)e). Thus, for each i, the Bernoulli random
variables {Zi(e) : e ∈ U × N} are all independent. This is sufficient for the proofs of parts (1), (2) and (4)
to go through unchanged. It remains to argue that part (3) still holds.

To prove this, we will need to handle additional dependencies between the tuples (Xe, Ye) as defined
above. For a fixed a, let ea denote (a, dw1(a)e), and e′a denote (a, dw2(a)e). If ea = e′a, then the only
non-deterministic random variable amongst {(Xe, Ye) : e = (a, j)} is the tuple (Xea , Yea). If on the other
hand, ea < e′a, then Xe′a is deterministically 0 and Yea = 1 − Xea . Moreover the random variables Xea

and Ye′a are correlated through a common threshold thresh, with Xea = 1(thresh < w2(a) − bw2(a)c) and
Ye′a = 1(thresh < w2(a)− bw2(a)c).

For any e, let Y ′e denote Ye′a if e = ea for some a, and let Ye be deterministically 0 otherwise. For
e = e′a 6= ea we redefine Ye to be 0. This essentially moves the troubling random variable Ye′a to Y ′ea .
Furthermore, this regrouping ensures that all these triples {(Xe, Ye, Y

′
e ) : e ∈ U ×N} are independent of each

other. The next result is an analog of Theorem 4.2, albeit with a more complex proof.

Theorem 4.3 Suppose (X1, Y1, Y
′
1), . . . , (Xn, Yn, Y

′
n) is a sequence of independent tuples of Bernoulli ran-

dom variables such that E[Xi] = pi, E[Yi] = qi, E[Y ′i ] = q′i, and E[XiYi] = 0, i.e., Xi and Yi are never
1 simultaneously. Further suppose that either (a) q′i = 0 or (b) qi = 1 − pi, Xi = 1(thresh < pi) and
Y ′i = 1(thresh < q′i) for threshold thresh chosen uniformly in [0, 1]. Let X =

∑
iXi, Y =

∑
i(Yi + Y ′i ),

µx = E[X] and µy = E[Y ]. Then assuming3 that µx + µy > 1,

µx − 1

µx + µy − 1
≤ E[

X

X + Y
] ≤ µx

µx + µy − 1
.

Proof:
We first write

E[
X

X + Y
]

= E(X1,...,Xn)[X ·EY1,Y ′
1 ...,Yn,Y

′
n
[

1

X + Y
| X1 . . . , Xn],

3We use the convention that 0/0 = 1 for the left inequality, and 0/0 = 0 for the right one.
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When X = 0, the expression inside the outer expectation is zero. For X ≥ 1, we once again apply
Lemma 4.1, which applies since conditioned on Xi, either Yi is fully determined, or Y ′i is deterministically
zero. In either case, at most one of Yi, Y

′
i is random. We conclude that

XE(Y1,Y ′
1 ...,Yn,Y

′
n)

[
1

X + Y
|X1, . . . , Xn]

≤ X

X + E[Y |X1, . . . , Xn]− 1
.

We now need to estimate these expectations. We will compute E[Xi + Yi + Y ′i |Xi]. We consider several
cases. In each case, we will show that this expectation can be written as βi + γiXi, with γi ≤ 1.

Case 1: q′i = 0. This case is similar to the setting of Theorem 4.2. Here E[Yi|Xi = 1] = 0. It follows that
E[Xi + Yi + Y ′i |Xi] = Xi + (1−Xi)qi/(1− pi) = qi

1−pi +Xi
1−pi−qi
1−pi . Clearly, γi ≤ 1.

Case 2(a): qi = 1 − pi, q′i ≥ pi. In this case, Xi = 1(thresh < pi), so that Xi = implies that Y ′i = 1 as
well. If Xi = 0, then Y ′i is 1 with probability exactly (q′i − pi)/(1− pi). Moreover, Yi = 1−Xi. Thus in this

case, E[Xi + Yi + Y ′i |Xi] = 1 +Xi + (1−Xi)(q
′
i − pi)/(1− pi) = 1 +

q′i−pi
1−pi +Xi

1−q′i
1−pi . By assumption γi ≤ 1.

Case 2(b): qi = 1 − pi, q
′
i < pi. In this case Xi = 0 iff thresh > pi in which case Y ′i = 0 as well.

If Xi = 1, then Y ′i is 1 with probability exactly q′i/pi. Once again, Yi = 1 − Xi. Thus in this case,

E[Xi + Yi + Y ′i |Xi] = 1 +Xi
q′i
pi

. By assumption γi < 1.
Thus in all cases, we can write

E[
X

X + Y
] =

= E(X1,...,Xn)[
∑
i

Xi/(
∑
i

γiXi +
∑
i

βi − 1)

with γi ≤ 1. This expression is then easily seen to be concave in each Xi. Indeed denoting the numerator

by f and the denominator by g, the partial derivative ∂f/g
∂Xi

= 1
g −

γif
g2 and ∂2f/g

∂Xi2
= − 2γi

g2 (1 − γi · fg ). Since

both f/g and γi are at most 1, the concavity follows. Thus using Jensen’s inequality,

E[
X

X + Y
] ≤

∑
iE[Xi]∑

i γiE[Xi] +
∑
i βi − 1

.

It remains to compute the value of the denominator. Since E[Xi + Yi + Y ′i |Xi] = βi + γiXi, it follows
that E[Xi+Yi+Y ′i ] = βi+γiE[Xi]. Thus the denominator is exactly E[X+Y ]−1. This implies the second
inequality.

To prove the first inequality, it will once again suffice to argue that E[ Y
X+Y ] is bounded above by

µy
µx+µy−1 .

Unlike Theorem 4.2, the variables X and Y are not symmetric. The proof however is relatively straightfor-
ward and we sketch it next. We will now write

E[
Y

X + Y
]

= E(Y1,Y ′
1 ...,Yn,Y

′
n)

[Y ·EX1,...,Xn [
1

X + Y
| Y1, Y ′1 . . . , Yn, Y ′n],

When Y = 0, the expression inside the outer expectation is zero. For Y ≥ 1, we once again apply
Lemma 4.1 to write

Y ·EX1,...,Xn [
1

X + Y
| Y1, Y ′1 . . . , Yn, Y ′n]

≤ Y

Y + E[X|Y1, Y ′1 . . . , Yn, Y ′n]− 1
.

13



We once again handle the two cases separately. In the case that qi = 1−pi, the variable Xi is fixed given Yi,
and the term Yi +Y ′i +E[Xi|Yi, Y ′i ] is equal to 1 +Y ′i (i.e., a deterministic quantity under the conditioning).
If on the other hand, q′i = 0, then Y ′i is deterministically 0, and the term Yi + Y ′i + E[Xi|Yi, Y ′i ] can be
written as βi + γiYi with γi ≤ 1. Thus we can apply Jensen’s inequality to derive the claimed bound.

This then implies part (3) of Theorem 3.2 and completes its proof.

5 Synthetic Test Results

We produced pseudo-random artificial sets of weights, which we modified to center around a few chosen
levels of exact weighted Jaccard similarity: 95%, 90%, 85%, 80%, 70%, 65%, 60%, 55%, 50%, and 40%. We
implemented a single scaling version of our algorithm, so that we could estimate Jaccard for all pairs, as
well as implementing Ioffe’s algorithm. We selected full-length samples, as well as 2-bit, 1-bit, and half-bit
compressions; the number of samples was chosen from 64, 128, 256, and 512.

The first figures we present compare Ioffe sketching against our algorithm using exact Jaccard and
our algorithm using binning, measuring the error between the values these algorithms produce, versus the
underlying truth. In Figure 5.1, the yellow bars show the average absolute error when estimating weighted
Jaccard using 128 Ioffe samples, shown at a variety of underlying true Jaccard values ranging from 0.40
(on the right) to 0.96, while the blue bars show the estimate using our algorithm computing an estimated
1024 samples randomly assigned to 128 bins. The green bars show the average absolute error introduced by
randomized rounding, in which every input item is reassigned to an integer close to its true weight, and the
Jaccard value of these roundings are computed exactly. We display these because, following the theorems
above on bias, all bias away from true Jaccard is introduced by rounding; both Ioffe’s sampling, and binning
preserve expected Jaccard values. At high true Jaccard values both Ioffe and we perform well, missing a
true Jaccard value of 0.96 by approximately 0.01; this corresponds to getting a mismatch in slightly over one
bin; due simply to quantization in 128 bins, we have to expect an error of at least one in 256. We observe
that our algorithm is insignificantly worse than Ioffe at very high Jaccard values from 0.9 to 1.0 (largely
due to errors introduced by rounding. Our algorithm is repeatably somewhat better than Ioffe at Jaccard
values between 0.8 and 0.9, and is roughly equivalent for Jaccard values down to 0.5, below which point Ioffe
sampling is better than our technique, although the absolute error for our technique never exceeds 0.035,
corresponding to getting an average excess mismatch of approximately 4 bins.

The next figure, Figure 5.1 shows the same bars, but with a new color assignment (Ioffe is now blue,
our algorithm is now red, and randomized rounding is gray), and computes the standard deviation of the
observation made above corresponding to each true Jaccard value. In this graph we see that our standard
deviation is smaller than Ioffe’s except at the lowest true Jaccard value, at which point the mismatch in
scalings starts to dominate the computation. We also see that the standard deviation is nearly as large as
the absolute error, mostly coming from estimates which are closer to the true value.
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Figure 5.1: Comparison of Ioffe’s and our sampling in terms of average error
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Figure 5.2: Comparison of Ioffe’s and our sampling in terms of standard deviation

6 Conclusions

We have presented a simple scheme to reduce weighted sets to unweighted ones efficiently, in such a way
that the size of the resulting unweighted set is tunable, and the Jaccard between sets of comparable sizes
is preserved very accurately. We have shown how to use this scheme for the problem of building sketches
for Jaccard similarity estimation for weighted sets. The resulting scheme is two orders of magnitude faster
than previously known schemes for typical setting of parameters, and does not suffer any significant loss in
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quality. We prove that the scheme has a non-zero but negligible bias, and satisfies tail inequalities similar
to the unweighted case. We also show empirical results showing that this computational benefit comes at
negligible cost in accuracy in the interesting case of large similarity.
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